939 resultados para Sodium iron ethylenediaminetetraacetic acid
Resumo:
An investigation was carried out on the transition of an iron electrode from active to passive state in a sulphuric acid solution. It was found that the active-passive transition was an auto-catalytic process in which a pre-passive film grew on the electrode surface. The growing pre-passive film had a fractal edge whose dimension was affected by the applied passivating potential and the presence of chlorides in the solution. Applying a more positive passivating potential led to a faster active-passive transition and resulted in a more irregular pre-passive film. If chlorides were introduced into the sulphuric acid solution, the active-passive transition became more rapid and the pre-passive film more irregular. Apart from the influence on the growth of the pre-passive film, the presence of chlorides in the passivating solution was found to deteriorate the stability of the final passive film. All these phenomena can be understood if the passivating iron electrode is regarded as a dissipative system. To explain these results, a fractal pre-film model is proposed in this paper. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Hyaluronic acid (HA) is a commercially valuable medical biopolymer increasingly produced through microbial fermentation. Viscosity limits product yield and the focus of research and development has been on improving the key quality parameters, purity and molecular weight. Traditional strain and process optimisation has yielded significant improvements, but appears to have reached a limit. Metabolic engineering is providing new opportunities and HA produced in a heterologous host is about to enter the market. In order to realise the full potential of metabolic engineering, however, greater understanding of the mechanisms underlying chain termination is required.
Resumo:
The present study was carried out to determine the ileal digestibility of Arg and Lys in acutely heatstressed broilers using diets varying in Arg:Lys ratio, NaCl concentration, and Met Source. Male broilers were maintained at 22degreesC from 21 to 33 d of age and then at 32degreesC from 33 to 38 d of age. From 28 to 38 d of age, birds were fed a diet with an Arg:Lys ratio of 1.05 and 3 g of supplemental NaCl/kg of diet with or without L-arg free base to increase the Arg:Lys to 1.35, and with or without 3 g/kg of additional NaCl. Methionine was supplied as equimolar amounts of DL-Met or 2-hydroxy-4-(methylthio)-butanoic acid in a 2 x 2 x 2 design. At 38 d of age, digesta were collected from the terminal ileum, and amino acid analyses were conducted on feed and digesta samples and compared with acid-insoluble ash (dietary celite) to calculate the apparent ileal digestibilities of Lys and Arg. Increasing the NaCl concentration and the presence of HMB significantly decreased the digestibility of both Arg and Lys, whereas increasing the Arg:Lys ratio increased the digestibility of only Arg but did increase BW gain (P = 0.08). An interaction between dietary NaCl and Arg:Lys ratio as well as the 3-way interaction suggested that dietary NaCl could affect the apparent ileal digestibility of Arg and Lys at certain Arg:Lys ratios and the response may be influenced by the Met source.
Resumo:
The free-ion model (FIM) describes iron ( Fe) uptake by barley [ Hordeum vulgare ( L.) 'Grammett'] as being controlled by the activity of the buffered, free, uncomplexed Fe3+ in solution. Chelators' effect on Fe uptake by barley was evaluated and the rate of exchange of Fe between chelators was examined. Barley was grown for two weeks in a low-Fe nutrient solution and transferred to solutions varying in Fe and chelators for 6 h assays. Shoot Fe-59 was higher in barley grown in citrate (7743 and 1928 Fe-59 Bq g(-1)) than in NTA(3220 and 1113 Fe-59 Bq g(-1); P = 0.045) despite similar free-Fe3+ activities. A comparison of Fe uptake by barley from solutions with pFe(3+) activities of 17.1 and 24.6 showed < 5% was from indiscriminate apoplastic-flow uptake (3250 Fe-59 Bq g(-1) vs. 160 Fe-59 Bq g(-1)). Using nutrient solutions from the barley studies but without plants, Fe exchange between chelators and a simulant for the barley phytosiderophore occurred within hours ( for NTA and citrate), or days ( EDTA and HEDTA). Results were similar between the barley and Fe-exchange experiments for the two nutrient-solution treatments where the same Fe3+ activities but different total-Fe concentrations were used: the higher total-Fe treatment resulted in six-fold higher shoot Fe-59, while in the Fe-exchange study that treatment had six-fold more Fe bound to the phytosiderophore simulant after 2 d. Results indicated deviations from the FIM were not explained by indiscriminate-flow uptake, and that sluggish Fe-exchange reactions between chelate and phytosiderophoresimulant, not FIM guidelines, may be more important in explaining Fe uptake from synthetic chelates by Fe-deficient barley.
Resumo:
Bacterial phosphotriesterases are binuclear metalloproteins for which the catalytic mechanism has been studied with a variety of techniques, principally using active sites reconstituted in vitro from apoenzymes. Here, atomic absorption spectroscopy and anomalous X-ray scattering have been used to determine the identity of the metals incorporated into the active site in vivo. We have recombinantly expressed the phosphotriesterase from Agrobacterium radiobacter (OpdA) in Escherichia coli grown in medium supplemented with 1 mM CoCl2 and in unsupplemented medium. Anomalous scattering data, collected from a single crystal at the Fe-K, Co-K and Zn-K edges, indicate that iron and cobalt are the primary constituents of the two metal-binding sites in the catalytic centre (alpha and P) in the protein expressed in E. coli grown in supplemented medium. Comparison with OpdA expressed in unsupplemented medium demonstrates that the cobalt present in the supplemented medium replaced zinc at the beta-position of the active site, which results in an increase in the catalytic efficiency of the enzyme. These results suggest an essential role for iron in the catalytic mechanism of bacterial phosphotriesterases, and that these phosphotriesterases are natively heterobinuclear iron-zinc enzymes.
Resumo:
Column leaching tests on black coal mine washery wastes were performed, to determine the chemistry of acid generation. Coal mine coarse rejects and tailings were subjected to wet and dry cycle dissolution and subsequently column leached. The rates of iron sulphide oxidation and carbonate mineral dissolution were determined based on the drainage chemistry. The kinetic data from column leach experiments are used to predict the time required to deplete the acid producing and acid consuming minerals in the mine wastes. The acid production in the mine rejects was found to depend upon iron chemistry, carbonate chemistry, diffusion of oxygen, and permeability. The chemistry of the drainage from two different coal mines is compared. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Iron (Fe) bioavailability in unpolished, polished grain and bran fraction of five rice genotypes with a range of Fe contents was measured by in vitro digestion and cultured Caco-2 cells of cooked grain. There was a significant difference in Fe bioavailability among the five rice genotypes tested, in both the unpolished and polished grain. The range of Fe bioavailability variation in polished rice was much wider than that of unpolished, suggesting the importance of using Fe levels and bioavailability in polished rice grain as the basis for selecting high-Fe rice cultivars for both agronomic and breeding purposes. Milling and polishing the grain to produce polished (or white) rice increased Fe bioavailability in all genotypes. Iron bioavailability in polished rice was high in the UBON2 and Nishiki, intermediate in both IR68144 and KDML105, and low in CMU122. All genotypes had low bioavailability of Fe in bran fraction compared to unpolished and polished grain, except in CMU122. CMU122 contained the lowest level of bioavailable Fe in unpolished and polished grain and bran, because of the dark purple pericarp colored grain and associated tannin content. The level of bioavailable Fe was not significantly correlated with grain Fe concentration or grain phytate levels among these five genotypes tested. The negative relationship between Fe bioavailability and the levels of total extractable phenol was only observed in unpolished (r = -0.83**) and bran fraction (r = -0.50*). The present results suggested that total extractable phenol and tannin contents could also contribute to lowering bioavailability of Fe in rice grain, in addition to phytate. (c) 2006 Society of Chemical Industry
Spectroscopic characterization of copper(II) binding to the immunosuppressive drug mycophenolic acid
Resumo:
Mycophenolic acid (MPA) is a drug that has found widespread use as an immunosuppressive agent which limits rejection of transplanted organs. Optimal use of this drug is hampered by gastrointestinal side effects which can range in severity. One mechanism by which MPA causes gastropathy may involve a direct interaction between the drug and gastric phospholipids. To combat this interaction we have investigated the potential of MPA to coordinate Cu(II), a metal which has been used to inhibit gastropathy associated with use of the NSAID indomethacin. Using a range of spectroscopic techniques we show that Cu(II) is coordinated to two MPA molecules via carboxylates and, at low pH, water ligands. The copper complex formed is stable in solution as assessed by mass spectrometry and H-1 NMR diffusion experiments. Competition studies with glycine and albumin indicate that the copper-MPA complex will release Cu(II) to amino acids and proteins thereby allowing free MPA to be transported to its site of action. Transfer to serum albumin proceeds via a Cu(MPA)(albumin) ternary complex. These results raise the possibility that copper complexes of MPA may be useful in a therapeutic situation.
Resumo:
The first syntheses of the natural products myo-inositol 1,2,3-trisphosphate and (+/-)-myo-inositol 1,2-bisphosphate are described. The protected key intermediates 4,5,6-tri-O-benzoyl-myo-inositol and (+/-)-3,4,5,6-tetra-O-benzyl-myo-inositol were phosphorylated with dibenzyl N,N-di-isopropylphosphoramidite in the presence of 1H-tetrazole and subsequent oxidation of the phosphite. The crystal structures of the synthetic intermediates (+/-)-1-O-(tert-butyldiphenylsilyl)-2,3,O-cyclohexylidene-myo-inos itol and (+/-)-4,5,6-tri-O-benzoyl-1-O-(tert-butyldiphenylsilyl)-2,3-O-cycl ohexylidene- myo-inositol are reported. myo-Inositol 1,2,3-trisphosphate (+/-)-myo-inositol 1,2-bisphosphate, and all isomeric myo-inositol tetrakisphosphates were evaluated for their ability to alter HO. production in the iron-catalysed Haber-Weiss reaction. The results demonstrated that a 1,2,3-grouping of phosphates in myo-inositol was necessary for inhibition also that (+/-)-myo-inositol 1,2-bisphosphate potentiated HO. production. myo-Inositol 1,2,3-trisphosphate resembled myo-inositol hexakisphosphate (phytic acid) in its ability to act as a siderophore by promoting iron-uptake into Pseudomonas aeruginosa.
Resumo:
1. The ability of myo-inositol polyphosphates to inhibit iron-catalysed hydroxyl radical formation was studied in a hypoxanthine/xanthine oxidase system [Graf, Empson and Eaton (1987) J. Biol. Chem. 262, 11647-11650]. Fe3+ present in the assay reagents supported some radical formation, and a standard assay, with 5 microM Fe3+ added, was used to investigate the specificity of compounds which could inhibit radical generation. 2. InsP6 (phytic acid) was able to inhibit radical formation in this assay completely. In this respect it was similar to the effects of the high affinity Fe3+ chelator Desferral, and dissimilar to the effects of EDTA which, even at high concentrations, still allowed detectable radical formation to take place. 3. The six isomers of InsP5 were purified from an alkaline hydrolysate of InsP6 (four of them as two enantiomeric mixtures) and they were compared with InsP6 in this assay. Ins(1,2,3,4,6)P5 and D/L-Ins(1,2,3,4,5)P5 were similar to InsP6 in that they caused a complete inhibition of iron-catalysed radical formation at > 30 microM. Ins(1,3,4,5,6)P5 and D/L-Ins(1,2,4,5,6)P5, however, were markedly less potent than InsP6, and did not inhibit radical formation completely; even when Ins(1,3,4,5,6)P5 was added up to 600 microM, significant radical formation was still detected. Thus InsP5s lacking 2 or 1/3 phosphates are in this respect qualitatively different from InsP6 and the other InsP5s. 4. scyllo-Inositol hexakisphosphate was also tested, and although it caused a greater inhibition than Ins(1,3,4,5,6)P5, it too still allowed detectable free radical formation even at 600 microM. 5. We conclude that the 1,2,3 (equatorial-axial-equatorial) phosphate grouping in InsP6 has a conformation that uniquely provides a specific interaction with iron to inhibit totally its ability to catalyse hydroxyl radical formation; we suggest that a physiological function of InsP6 might be to act as a 'safe' binding site for iron during its transport through the cytosol or cellular organelles
Resumo:
A systematic survey of the possible methods of chemical extraction of iron by chloride formation has been presented and supported by a comparable study of :feedstocks, products and markets. The generation and evaluation of alternative processes was carried out by the technique of morphological analysis vihich was exploited by way of a computer program. The final choice was related to technical feasibility and economic viability, particularly capital cost requirements and developments were made in an estimating procedure for hydrometallurgjcal processes which have general applications. The systematic exploration included the compilation of relevant data, and this indicated a need.to investigate precipitative hydrolysis or aqueous ferric chloride. Arising from this study, two novel hydrometallurgical processes for manufacturing iron powder are proposed and experimental work was undertaken in the following .areas to demonstrate feasibility and obtain basic data for design purposes: (1) Precipitative hydrolysis of aqueous ferric chloride. (2) Gaseous chloridation of metallic iron, and oxidation of resultant ferrous chloride. (3) Reduction of gaseous ferric chloride with hydrogen. (4) Aqueous acid leaching of low grade iron ore. (5) Aqueous acid leaching of metallic iron. The experimentation was supported by theoretical analyses dealing with: (1) Thermodynamics of hydrolysis. (2) Kinetics of ore leaching. (3) Kinetics of metallic iron leaching. (4) Crystallisation of ferrous chloride. (5) Oxidation of anhydrous ferrous chloride. (6) Reduction of ferric chloride. Conceptual designs are suggested fbr both the processes mentioned. These draw attention to areas where further work is necessary, which are listed. Economic analyses have been performed which isolate significant cost areas, und indicate total production costs. Comparisons are mode with previous and analogous proposals for the production of iron powder.
Resumo:
Gastro-oesophageal Reflux Disease (GORD), is generally caused by excess gastric reflux back to the oesophagus where damage to the mucosa results in injury. GORD is a very common disease in western countries, more than a quarter of western people are suffering from this disease and there is a trend that the percentage population in eastern countries who are diagnosed as GORD is increasing. GORD and its complications damage the quality of life and can lead to serious oesophageal diseases including Barrett’s disease and oesophageal carcinoma. Sodium alginate dissolved in water forms a viscous liquid and can coat on oesophageal mucosa for a period of time. In this study the ability of the liquid alginate to adhere to the oesophageal mucosa was investigated and the factors that affect this retention were examined. The potential of this liquid alginate as a drug delivery vehicle to extend the duration of contact with the oesophageal mucosa was confirmed by this study. The capacity of an alginate coating to retard acid and pepsin diffusion, the two main aggressive factors in gastric reflux, was investigated. A significant reduction in acid and pepsin diffusion by alginate gel layer was demonstrated in this project, indicating that alginate has great potential to protect against damage caused by acidic reflux. A novel method was introduced using an independent score system to assess the protection of oesophageal tissue by a coating of liquid alginate using microscopy as a technique. This technique demonstrated that alginate can protect the oesophageal epithelial tissue from the damage caused by gastric acid and pepsin. Many techniques were used in this study. The experimental results suggested that liquid sodium alginate is a very promising candidate in treating local oesophageal diseases through forming a coating on the oesophageal mucosal surface, retarding the diffusion of components of gastric refluxate and thus reducing the contact of these noxious factors with the epithelium and minimising injury.
Resumo:
The microbial demand for iron is often met by the elaboration of siderophores into the surrounding medium and expression of cognate outer membrane receptors for the ferric siderophore complexes. Conditions of iron limitation, such as those encountered in vivo, cause Pseudomonas aeruginosa to express two high-affinity iron-uptake systems based on pyoverdin and pyochelin. These systems will operate both in the organism's natural habitat, soil and water, where the solubility of iron at neutral pH is extremely low, and in the human host where the availability of free iron is too low to sustain bacterial growth due to the iron-binding glycoproteins transferrin and lactoferrin. Cross-feeding and radiolabelled iron uptake experiments demonstrated that pyoverdin biosynthesis and uptake were highly heterogeneous amongst P.aeruginosa strains, that growth either in the presence of pyoverdin or pyochelin resulted in induction of specific IROMPs, and that induction of iron uptake is siderophore-specific. The P.aeruginosa Tn5 mutant PH1 is deficient in ferripyoverdin uptake and resistant to pyocin Sa, suggesting that the site of interaction of pyocin Sa is a ferripyoverdin receptor. Additional Tn5 mutants appeared to exploit different strategies to achieve pyocin Sa-resistance, involving modifications in expression of pyoverdin-mediated iron uptake, indicating that complex regulatory systems exist to enable these organisms to compete effectively for iron. Modulation of expression of IROMPs prompted a study of the mechanism of uptake of a semi-synthetic C(7) α-formamido substituted cephalosporin BRL 41897A. Sensitivity to this agent correlated with expression of the 75 kDa ferri-pyochelin receptor and demonstrated the potential of high-affinity iron uptake systems for targeting of novel antibiotics. Studies with ferri-pyoverdin uptake-deficient mutant PH1 indicated that expression of outer membrane protein G (OprG), which is usually expressed under iron-rich conditions and repressed under iron-deficient conditions, was perturbed. Attempts were made to clone the oprG gene using a degenerate probe based on the N-terminal amino acid sequence. A strongly hybridising HindIll restriction fragment was cloned and sequenced, but failed to reveal an open reading frame correspondmg to OprG. However, there appears to be good evidence that a part of the gene codmg for the hydrophilic membrane-associated ATP-binding component of a hitherto uncharacterised periplasmic- binding-protein-dependent transport system has been isolated. The full organisation and sequence of the operon, and substrate for this putative transport system, are yet: to be elucidated,
Resumo:
This study examined the effect of iron deprivation and sub-inhibitory concentrations of antifungal agents on yeast cell surface antigen recognition by antibodies from patients with Candida infections. Separation of cell wall surface proteins by sodium dodecyl-polyacrylamide gel electrophoresis (SDS-PAGE) and immunological detection by immunoblotting, revealed that antigenic profiles of yeasts were profoundly influenced by the growth environment. Cells grown under iron-depleted conditions expressed several iron-regulated proteins that were recognized by antibodies from patient sera. An attempt to characterize these proteins by lectin blotting with concanavalin A revealed that some could be glycoprotein in nature. Furthermore, these proteins which were located within cell walls and on yeast surfaces, were barely or not expressed in yeasts cultivated under iron-sufficient conditions. The magnitude and heterogeneity of human antibody responses to these iron-regulated proteins were dependent on the type of Candida infection, serum antibody class and yeast strain. Hydroxamate-type siderophores were also detected in supernatants of iron depleted yeast cultures. This evidence suggests that Candida albicans expresses iron-regulated proteins/glycoproteins in vitro which may play a role in siderophore-mediated iron uptake in Candida albicans. Sequential monitoring of IgG antibodies directed against yeast surface antigens during immunization of rabbits revealed that different antigens were recognized particularly during early and later stages of immunization in iron-depleted cells compared to iron-sufficient cells. In vitro and in vivo adherence studies demonstrated that growth phase, yeast strain and growth conditions affect adhesion mechanisms. In particular, growth under iron-depletion in the presence of sub-inhibitory concentrations of polyene and azole antifungals enhanced the hydrophobicity of C.albicans. Growth conditions also influenced MICs of antifungals, notably that of ketoconazole. Sub-inhibitory concentrations of amphotericin B and fluconazole had little effect on surface antigens, whereas nystatin induced profound changes in surface antigens of yeast cells. The effects of such drug concentrations on yeast cells coupled with host defence mechanisms may have a significant affect on the course of Candida infections.