984 resultados para Single-crossing property
Resumo:
This study examines boundaries in health care organizations. Boundaries are sometimes considered things to be avoided in everyday living. This study suggests that boundaries can be important temporally and spatially emerging locations of development, learning, and change in inter-organizational activity. Boundaries can act as mediators of cultural and social formations and practices. The data of the study was gathered in an intervention project during the years 2000-2002 in Helsinki in which the care of 26 patients with multiple and chronic illnesses was improved. The project used the Change Laboratory method that represents a research assisted method for developing work. The research questions of the study are: (1) What are the boundary dynamics of development, learning, and change in health care for patients with multiple and chronic illnesses? (2) How do individual patients experience boundaries in their health care? (3) How are the boundaries of health care constructed and reconstructed in social interaction? (4) What are the dynamics of boundary crossing in the experimentation with the new tools and new practice? The methodology of the study, the ethnography of the multi-organizational field of activity, draws on cultural-historical activity theory and anthropological methods. The ethnographic fieldwork involves multiple research techniques and a collaborative strategy for raising research data. The data of this study consists of observations, interviews, transcribed intervention sessions, and patients' health documents. According to the findings, the care of patients with multiple and chronic illnesses emerges as fragmented by divisions of a patient and professionals, specialties of medicine and levels of health care organization. These boundaries have a historical origin in the Finnish health care system. As an implication of these boundaries, patients frequently experience uncertainty and neglect in their care. However, the boundaries of a single patient were transformed in the Change Laboratory discussions among patients, professionals and researchers. In these discussions, the questioning of the prevailing boundaries was triggered by the observation of gaps in inter-organizational care. Transformation of the prevailing boundaries was achieved in implementation of the collaborative care agreement tool and the practice of negotiated care. However, the new tool and practice did not expand into general use during the project. The study identifies two complementary models for the development of health care organization in Finland. The 'care package model', which is based on productivity and process models adopted from engineering and the 'model of negotiated care', which is based on co-configuration and the public good.
Resumo:
A new form of L-histidine L-aspartate monohydrate crystallizes in space group P22 witha = 5.131(1),b = 6.881(1),c= 18.277(2) Å,β= 97.26(1)° and Z = 2. The structure has been solved by the direct methods and refined to anR value of 0.044 for 1377 observed reflections. Both the amino acid molecules in the complex assume the energetically least favourable allowed conformation with the side chains staggered between the α-amino and α-scarboxylate groups. This results in characteristic distortions in some bond angles. The unlike molecules aggregate into alternating double layers with water molecules sandwiched between the two layers in the aspartate double layer. The molecules in each layer are arranged in a head-to-tail fashion. The aggregation pattern in the complex is fundamentally similar to that in other binary complexes involving commonly occurring L amino acids, although the molecules aggregate into single layers in them. The distribution of crystallographic (and local) symmetry elements in the old form of the complex is very different from that in the new form. So is the conformation of half the histidine molecules. Yet, the basic features of molecular aggregation, particularly the nature and the orientation of head-to-tail sequences, remain the same in both the forms. This supports the thesis that the characteristic aggregation patterns observed in crystal structures represent an intrinsic property of amino acid aggregation.
Resumo:
Layered graphitic materials exhibit new intriguing electronic structure and the search for new types of two-dimensional (2D) monolayer is of importance for the fabrication of next generation miniature electronic and optoelectronic devices. By means of density functional theory (DFT) computations, we investigated in detail the structural, electronic, mechanical and optical properties of the single-layer bismuth iodide (BiI3) nanosheet. Monolayer BiI3 is dynamically stable as confirmed by the computed phonon spectrum. The cleavage energy (Ecl) and interlayer coupling strength of bulk BiI3 are comparable to the experimental values of graphite, which indicates that the exfoliation of BiI3 is highly feasible. The obtained stress-strain curve shows that the BiI3 nanosheet is a brittle material with a breaking strain of 13%. The BiI3 monolayer has an indirect band gap of 1.57 eV with spin orbit coupling (SOC), indicating its potential application for solar cells. Furthermore, the band gap of BiI3 monolayer can be modulated by biaxial strain. Most interestingly, interfacing electrically active graphene with monolayer BiI3 nanosheet leads to enhanced light absorption compared to that in pure monolayer BiI3 nanosheet, highlighting its great potential applications in photonics and photovoltaic solar cells.
Resumo:
In situ Raman experiments together with transport measurements have been carried out in single-walled carbon nanotubes as a function of electrochemical top gate voltage (Vg). We have used the green laser (EL=2.41 eV), where the semiconducting nanotubes of diameter ~1.4 nm are in resonance condition. In semiconducting nanotubes, the G−- and G+-mode frequencies increase by ~10 cm−1 for hole doping, the frequency shift of the G− mode is larger compared to the G+ mode at the same gate voltage. However, for electron doping the shifts are much smaller: G− upshifts by only ~2 cm−1 whereas the G+ does not shift. The transport measurements are used to quantify the Fermi-energy shift (EF) as a function of the gate voltage. The electron-hole asymmetry in G− and G+ modes is quantitatively explained using nonadiabatic effects together with lattice relaxation contribution. The electron-phonon coupling matrix elements of transverse-optic (G−) and longitudinal-optic (G+) modes explain why the G− mode is more blueshifted compared to the G+ mode at the same Vg. The D and 2D bands have different doping dependence compared to the G+ and G− bands. There is a large downshift in the frequency of the 2D band (~18 cm−1) and D (~10 cm−1) band for electron doping, whereas the 2D band remains constant for the hole doping but D upshifts by ~8 cm−1. The doping dependence of the overtone of the G bands (2G bands) shows behavior similar to the dependence of the G+ and G− bands.
Resumo:
Layered LiNi1/3Co1/3Mn1/3O2, which is isostructural to LiCoO2, is considered as a potential cathode material. A layer of carbon coated on the particles improves the electrode performance, Which is attributed to an increase of the grain connectivity and also to protection of metal oxide from chemical reaction. The present work involves in situ synthesis of carbon-coated submicrometer-sized particles of LiNi1/3Co1/3Mn1/3O2 in an inverse microemulsion medium in the presence of glucose. The precursor obtained from the reaction is heated in air at 900 degrees C for 6 h to get crystalline LiNi1/3Co1/3Mn1/3O2. The carbon coating is found to impart porosity as well as higher surface area in relation to bare samples of the compound. The electrochemical characterization studies provide that carbon-coated LiNi1/3Co1/3Mn1/3O2 samples exhibit improved rate capability and cycling performance. The carbon coatings are shown to suppress the capacity fade, which is normally observed for the bare compound. Impedance spectroscopy data provide additional evidence for the beneficial effect of a carbon coating on LiNi1/3Co1/3Mn1/3O2 particles.
Resumo:
Fire resistance of cold-formed light gauge steel frame (LSF) wall systems is enhanced by lining them with single or multiple layers of wall boards with varying thermal properties. These wall boards are gypsum plasterboards or Magnesium Oxide (MgO) boards produced by different manufacturers. Thermal properties of these boards appear to show considerable variations and this can lead to varying fire resistance levels (FRL) for their wall systems. Currently FRLs of wall systems are determined using full scale fire tests, but they are time consuming and expensive. Recent research studies on the fire performance of LSF wall systems have used finite element studies to overcome this problem, but they were developed based on 1-D and 2-D finite element platform capable of performing either heat transfer or structural analysis separately. Hence in this research a 3-D finite element model was developed first for LSF walls lined with gypsum plasterboard and cavity insulation materials. Accurate thermal properties of these boards are essential for finite element modelling, and thus they were measured at both ambient and elevated temperatures. This experimental study included specific heat, relative density and thermal conductivity of boards. The developed 3-D finite element model was then validated using the available fire tests results of LSF walls lined with gypsum plasterboard, and is being used to investigate the fire performance of different LSF wall configurations. The tested MgO board exhibited significant variations in their thermal properties in comparison to gypsum plasterboards with about 50% loss of its initial mass at about 500 ºC compared to 16% for gypsum plasterboards. Hence the FRL of MgO board lined LSF wall systems is likely to be significantly reduced. This paper presents the details of this research study on the fire performance of LSF wall systems lined with gypsum plasterboard and MgO board including the developed 3-D finite element models, thermal property tests and the results.
Resumo:
Taking an interdisciplinary approach unmatched by any other book on this topic, this thoughtful Handbook considers the international struggle to provide for proper and just protection of Indigenous intellectual property (IP). In light of the United Nations Declaration on the Rights of Indigenous Peoples 2007, expert contributors assess the legal and policy controversies over Indigenous knowledge in the fields of international law, copyright law, trademark law, patent law, trade secrets law, and cultural heritage. The overarching discussion examines national developments in Indigenous IP in the United States, Canada, South Africa, the European Union, Australia, New Zealand, and Indonesia. The Handbook provides a comprehensive overview of the historical origins of conflict over Indigenous knowledge, and examines new challenges to Indigenous IP from emerging developments in information technology, biotechnology, and climate change. Practitioners and scholars in the field of IP will learn a great deal from this Handbook about the issues and challenges that surround just protection of a variety of forms of IP for Indigenous communities. Preface The Legacy of David Unaipon Matthew Rimmer Introduction: Mapping Indigenous Intellectual Property Matthew Rimmer PART I INTERNATIONAL LAW 1. The United Nations Declaration on the Rights of Indigenous Peoples: A Human Rights Framework for Indigenous Intellectual Property Mauro Barelli 2. The WTO, The TRIPS Agreement and Traditional Knowledge Tania Voon 3. The World Intellectual Property Organization and Traditional Knowledge Sara Bannerman 4. The World Indigenous Network: Rio+20, Intellectual Property, Indigenous Knowledge, and Sustainable Development Matthew Rimmer PART II COPYRIGHT LAW AND RELATED RIGHTS 5. Government Man, Government Painting? David Malangi and the 1966 One-Dollar Note Stephen Gray 6. What Wandjuk Wanted Martin Hardie 7. Avatar Dreaming: Indigenous Cultural Protocols and Making Films Using Indigenous Content Terri Janke 8. The Australian Resale Royalty for Visual Artists: Indigenous Art and Social Justice Robert Dearn and Matthew Rimmer PART III TRADE MARK LAW AND RELATED RIGHTS 9. Indigenous Cultural Expression and Registered Designs Maree Sainsbury 10. The Indian Arts and Crafts Act: The Limits of Trademark Analogies Rebecca Tushnet 11. Protection of Traditional Cultural Expressions within the New Zealand Intellectual Property Framework: A Case Study of the Ka Mate Haka Sarah Rosanowski 12 Geographical Indications and Indigenous Intellectual Property William van Caenegem PART IV PATENT LAW AND RELATED RIGHTS 13. Pressuring ‘Suspect Orthodoxy’: Traditional Knowledge and the Patent System Chidi Oguamanam, 14. The Nagoya Protocol: Unfinished Business Remains Unfinished Achmad Gusman Siswandi 15. Legislating on Biopiracy in Europe: Too Little, too Late? Angela Daly 16. Intellectual Property, Indigenous Knowledge, and Climate Change Matthew Rimmer PART V PRIVACY LAW AND IDENTITY RIGHTS 17. Confidential Information and Anthropology: Indigenous Knowledge and the Digital Economy Sarah Holcombe 18. Indigenous Cultural Heritage in Australia: The Control of Living Heritages Judith Bannister 19. Dignity, Trust and Identity: Private Spheres and Indigenous Intellectual Property Bruce Baer Arnold 20. Racial Discrimination Laws as a Means of Protecting Collective Reputation and Identity David Rolph PART VI INDIGENOUS INTELLECTUAL PROPERTY: REGIONAL PERSPECTIVES 21. Diluted Control: A Critical Analysis of the WAI262 Report on Maori Traditional Knowledge and Culture Fleur Adcock 22. Traditional Knowledge Governance Challenges in Canada Jeremy de Beer and Daniel Dylan 23. Intellectual Property protection of Traditional Knowledge and Access to Knowledge in South Africa Caroline Ncube 24. Traditional Knowledge Sovereignty: The Fundamental Role of Customary Law in Protection of Traditional Knowledge Brendan Tobin Index
Resumo:
This submission responds to the document Intellectual Property Arrangements Issues Paper (Issues Paper) released by the Productivity Commission in October 2015 for public consultation and input by 30 November 2015. The API is grateful for the extension of time granted by the Commission to complete and lodge this submission. The overall need for an inquiry into intellectual property is supported by API. In particular it is noted with approval that the Commission states in its Issues Paper that it is to consider the appropriate balance between “incentives for innovation and investments, and the interests of both individuals and businesses in assessing products”.1 However, API is of the view that intellectual property in the area of real property presents a number of issues which are not fully canvassed in the abovementioned Issues Paper. Intellectual property embedded in valuation and other property-related reports of API members involves the acquisition of information which may possibly be confidential. Yet, when engaged in banks and financial institutions the intellectual property in such valuations and/ or reports is commonly required to be passed to the client bank or financial institution. In the Issues Paper it is proposed that there are seven different forms of intellectual property rights.2 It is the view of API that an eight form exists, namely private agreements. The Issues Paper, however, regards private agreements between firms as alternatives to intellectual property rights. The API considers that “secrecy or confidentiality arrangements”3 as identified in the Issues Paper form a much larger part of the manner in which intellectual property is maintained in Australia for the purposes of trade secrecy or more often, financial confidentiality...
Resumo:
The ‘Weaning management of beef calves – practical guidelines for northern Australian beef producers‘ book or simply ‘the weaner book’ is a compilation of all the research, demonstration and practical knowledge available on weaning and weaner management in northern Australia. Most of this information has been available for some years, but it has not been collated in a single document that is practical and easy to understand. It has been difficult for property owners, managers and their staff to access. The end result of this project is an easy to read guide that has all the available information in one publication. Compiling this information has also highlighted areas where information is limited or non existent or where available information is not being implemented across the whole industry. This has been evaluated and included in recommendations for further research and or demonstration work.
Resumo:
This chapter addresses the areas more commonly found in everyday practice (NB circuit layouts and plant breeder's rights are not covered). Importantly, IP law has become very specialised, and as such one for which practitioners will need expertise or access to relevant experts in order to properly provide advice. The following therefore is an overview only of relevant issues.
Resumo:
Analytical models of IEEE 802.11-based WLANs are invariably based on approximations, such as the well-known mean-field approximations proposed by Bianchi for saturated nodes. In this paper, we provide a new approach for modeling the situation when the nodes are not saturated. We study a State Dependent Attempt Rate (SDAR) approximation to model M queues (one queue per node) served by the CSMA/CA protocol as standardized in the IEEE 802.11 DCF. The approximation is that, when n of the M queues are non-empty, the attempt probability of the n non-empty nodes is given by the long-term attempt probability of n saturated nodes as provided by Bianchi's model. This yields a coupled queue system. When packets arrive to the M queues according to independent Poisson processes, we provide an exact model for the coupled queue system with SDAR service. The main contribution of this paper is to provide an analysis of the coupled queue process by studying a lower dimensional process and by introducing a certain conditional independence approximation. We show that the numerical results obtained from our finite buffer analysis are in excellent agreement with the corresponding results obtained from ns-2 simulations. We replace the CSMA/CA protocol as implemented in the ns-2 simulator with the SDAR service model to show that the SDAR approximation provides an accurate model for the CSMA/CA protocol. We also report the simulation speed-ups thus obtained by our model-based simulation.
Resumo:
The near-tip deformation field in a high-constraint three-point bend specimen of pure aluminium single crystal is studied using in situ electron back-scattered diffraction and optical metallography. The orientation considered has the notch lying on the (0 1 0) plane and the notch front along direction. Results clearly show the occurrence of a kink shear sector boundary at 90° to the notch line on the specimen free surface as predicted by the analytical model of Rice [J.R. Rice, Mech. Mater. 6 (1987) 317].
Resumo:
In this paper, for the first time, the effects of energy quantization on single electron transistor (SET) inverter performance are analyzed through analytical modeling and Monte Carlo simulations. It is shown that energy quantization mainly changes the Coulomb blockade region and drain current of SET devices and thus affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new analytical model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. A compact expression is developed for a novel parameter quantization threshold which is introduced for the first time in this paper. Quantization threshold explicitly defines the maximum energy quantization that an SET inverter logic circuit can withstand before its noise margin falls below a specified tolerance level. It is found that SET inverter designed with CT:CG=1/3 (where CT and CG are tunnel junction and gate capacitances, respectively) offers maximum robustness against energy quantization.
Resumo:
A comparative study of the electric-field induced hopping transport probes the effective dimensionality (D) in bulk and ultrathin films of single-wall carbon nanotubes (SWNTs). The values of the scaling function exponents for the electroconductance are found to be consistent with that in three-dimensional and two-dimensional systems. The significant difference in threshold voltage in these two types of SWNTs is a consequence of the variation in the number of energetically favorable sites available for charge carriers to hop by using the energy from the field. Furthermore, a modification to the magnetotransport is observed under high electric-fields.