971 resultados para Single mothers
Resumo:
Transport and magnetic properties of flux-grown Nd1−xPbxMnO3 single crystals (x=0.15–0.5) are studied in the temperature range 300–77 K and 280–2 K, respectively. Magnetization measurements with a superconducting quantum interference device confirm a paramagnetic to ferromagnetic transition around 110, 121, 150, 160, and 178 K for x=0.15, 0.2, 0.3, 0.4, and 0.5, respectively. Four probe resistivity measurements at low temperatures show a monotonic increase for x=0.15 which represents a ferromagnetic insulating (FMI) phase. For Nd0.8Pb0.2MnO3 there is a slope change present in the resistivity profile at 127 K where metal to insulator transition (MI) sets in. For x=0.3 this MI transition is more prominent. However, both these samples have FMI phase at low temperature. When the concentration of lead increases (x>0.3) the sample displays a clear insulator to metal transition with a low temperature ferromagnetic metallic phase. On the basis of these measurements we have predicted the phase diagram of Nd1−xPbxMnO3. Magnetization measurements by a vibration sample magnetometer point out the appreciable differences between zero field cooled and field cooled profiles below the ferromagnetic to paramagnetic transition temperature for all x. These are indicative of magnetic frustration.
Resumo:
We report the effect of surface treatments on the dynamic conductance curves (G=dI/dV‐V) of Au‐Bi2Sr2CaCu2O8+δ (single crystal) point contact junctions of variable junction conductances (100 mS≳G≳100 μS). We find that if the crystal surface is cleaved freshly just prior to making contacts, all irreproducible sharp multiple features often observed in tunneling data of Bi(2212) oxide superconductors disappear. If the cleaved crystal surfaces are left under ambient conditions for a few days and the tunneling experiments are repeated, these multiple features reappear. We also find that if the current in the junction is made to pass predominantly through the bulk (and not along the surface), gap features are sharper. The observed conductance curves are fitted to a modified model [G. E. Blonder et al., Phys. Rev. B 25, 4515 (1982)] and estimated gap values are Δ≂28 to 30 meV corresponding to the ratio 2Δ/kBTc ≂ 7.5 with lifetime broadening Γ/Δ≂0.2. We conclude that the sharp multiple features observed in Bi(2212) tunneling curves has no intrinsic origin in the bulk and they arise from the surface only.
Resumo:
It is well known that the space-time block codes (STBCs) from complex orthogonal designs (CODs) are single-symbol decodable/symbol-by-symbol decodable (SSD). The weight matrices of the square CODs are all unitary and obtainable from the unitary matrix representations of Clifford Algebras when the number of transmit antennas n is a power of 2. The rate of the square CODs for n = 2(a) has been shown to be a+1/2(a) complex symbols per channel use. However, SSD codes having unitary-weight matrices need not be CODs, an example being the minimum-decoding-complexity STBCs from quasi-orthogonal designs. In this paper, an achievable upper bound on the rate of any unitary-weight SSD code is derived to be a/2(a)-1 complex symbols per channel use for 2(a) antennas, and this upper bound is larger than that of the CODs. By way of code construction, the interrelationship between the weight matrices of unitary-weight SSD codes is studied. Also, the coding gain of all unitary-weight SSD codes is proved to be the same for QAM constellations and conditions that are necessary for unitary-weight SSD codes to achieve full transmit diversity and optimum coding gain are presented.
Resumo:
Two copper-containing compounds [Cu(3)(mu(3)-OH)(2)-(H(2)O)(2){(SO(3))-C(6)H(3)-(COO)(2)}(CH(3)COO)] , I, and [Cu(5)(mu(3)-OH)(2)(H(2)O)(6){(NO(2))-C(6)H(3)-(COO)(2)}(4)]center dot 5H(2)O, II, were prepared using sulphoisophthalic and nitroisophthalic acids. The removal of the coordinated water molecules in the compounds was investigated using in situ single crystal to single crystal (SCSC) transformation studies, temperature-dependent powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). The efficacy of SCSC transformation studies were established by the observation of dimensionality cross-over from a two-dimensional (I) to a three-dimensional structure, Cu(6)(mu(3)-OH)(4){(SO(3))-C(6)H(3)-(COO)(2)}(2)(CH(3)COO)(2), Ia, during the removal of the coordinated water molecules. Compound H exhibited a structural reorganization forming Cu(5)(mu(2)-OH)(2){(NO(2))C(6)H(3)-(COO)(2))(4)], Ha, possessing trimeric (Cu(3)O(12)) and dimeric (Cu(2)O(8)) copper clusters. The PXRD studies indicate that the three-dimensional structure (Ia) is transient and unstable, reverting back to the more stable two-dimensional structure (I) on cooling to room temperature. Compound Ha appears to be more stable at room temperature. The rehydration/dehydration studies using a modified TGA setup suggest complete rehydration of the water molecules, indicating that the water molecules in both compounds are labile. A possible model for the observed changes in the structures has been proposed. Magnetic studies indicate changes in the exchanges between the copper centers in Ha, whereas no such behavior was observed in Ia.
Resumo:
Near-infrared diffuse optical tomography (DOT) technique has the capability of providing good quantitative reconstruction of tissue absorption and scattering properties with additional inputs such as input and output modulation depths and correction for the photon leakage. We have calculated the two-dimensional (2D) input modulation depth from three-dimensional (3D) diffusion to model the 2D diffusion of photons. The photon leakage when light traverses from phantom to the fiber tip is estimated using a solid angle model. The experiments are carried for single (5 and 6 mm) as well as multiple inhomogeneities (6 and 8 mm) with higher absorption coefficient in a homogeneous phantom. Diffusion equation for photon transport is solved using finite element method and Jacobian is modeled for reconstructing the optical parameters. We study the development and performance of DOT system using modulated single light source and multiple detectors. The dual source methods are reported to have better reconstruction capabilities to resolve and localize single as well as multiple inhomogeneities because of its superior noise rejection capability. However, an experimental setup with dual sources is much more difficult to implement because of adjustment of two out of phase identical light probes symmetrically on either side of the detector during scanning time. Our work shows that with a relatively simpler system with a single source, the results are better in terms of resolution and localization. The experiments are carried out with 5 and 6 mm inhomogeneities separately and 6 and 8 mm inhomogeneities both together with absorption coefficient almost three times as that of the background. The results show that our experimental single source system with additional inputs such as 2D input/output modulation depth and air fiber interface correction is capable of detecting 5 and 6 mm inhomogeneities separately and can identify the size difference of multiple inhomogeneities such as 6 and 8 mm. The localization error is zero. The recovered absorption coefficient is 93% of inhomogeneity that we have embedded in experimental phantom.
Resumo:
The subject of transients in polyphase induction motors and synchronous machines has been studied in very great detail by several investigators, but no published literature exists dealing exclusively with the analysis of the problem of transients in single-phase induction motors. This particular problem has been studied in this paper by applying the Laplace transform. The results of actual computation of the currents and developed electrical torque are compared with the data obtained by setting up the integro-differential equations of the machine on an electronic differential analyzer. It is shown that if the motor is switched on to the supply when the potential passes through its zero value, there is a pulsating fundamental frequency torque superimposed on the average steady-state unidirectional torque. If, on the other hand, the switch is closed when the applied potential passes through its maximum value, the developed electrical torque settles down to its final steady-state value during the first cycle of the supply voltage.
Resumo:
a complete and accurate analysis is provided for the solution of single-phase induction motor performance characteristics based on a paper by F.W. Suhr ["SYMMETRICAL COMPONENTS AS APPLIED TO THE SINGLE PHASE INDUCTION MOTOR," Electrical Engineering (AlEE Transactions), volume 64, September 1945, pages 651-66].
Resumo:
Static distance relays employing semiconductor devices as their active elements offer many advantages over the conventional electromagnetic and rectifier relays. The paper describes single-system and three-system static distance relays, which depend for their operation on the instantaneous-comparison or `block-spike¿ scheme. Design principles and typical discriminating and logic circuits are described for the new relaying equipment. The relaying circuitry has been devised for obtaining uniform performance on all kinds of faults, by the use of two phase detectors¿one for multiphase faults and one for earth faults. The phase detector for multiphase faults provides an improved polar characteristic in the complex-impedance plane, which fits only around the fault area of a transmission line. The other features of the relay are: reliable pickup for close-in faults, least susceptibility to maloperation under power-swing conditions, and reduction in cost and panel space required. The operating characteristics of the relays, as expressed by accuracy/range charts, are also presented.
Resumo:
High frequency PWM inverters produce an output voltage spectrum at the fundamental reference frequency and around the switching frequency. Thus ideally PWM inverters do not introduce any significant lower order harmonics. However, in real systems, due to dead-time effect, device drops and other non-idealities lower order harmonics are present. In order to attenuate these lower order harmonics and hence to improve the quality of output current, this paper presents an \emph{adaptive harmonic elimination technique}. This technique uses an adaptive filter to estimate a particular harmonic that is to be attenuated and generates a voltage reference which will be added to the voltage reference produced by the current control loop of the inverter. This would have an effect of cancelling the voltage that was producing the particular harmonic. The effectiveness and the limitations of the technique are verified experimentally in a single phase PWM inverter in stand-alone as well as g rid interactive modes of operation.
Resumo:
Single stranded DNA binding proteins (SSBs) are vital for the survival of organisms. Studies on SSBs from the prototype, Escherichia coli (EcoSSB) and, an important human pathogen, Mycobacterium tuberculosis (MtuSSB) had shown that despite significant variations in their quaternary structures, the DNA binding and oligomerization properties of the two are similar. Here, we used the X-ray crystal structure data of the two SSBs to design a series of chimeric proteins (m beta 1, m beta 1'beta 2, m beta 1-beta 5, m beta 1-beta 6 and m beta 4-beta 5) by transplanting beta 1, beta 1'beta 2, beta 1-beta 5, beta 1-beta 6 and beta 4-beta 5 regions, respectively of the N-terminal (DNA binding) domain of MtuSSB for the corresponding sequences in EcoSSB. In addition, m beta 1'beta 2(ESWR) SSB was generated by mutating the MtuSSB specific `PRIY' sequence in the beta 2 strand of m beta 1'beta 2 SSB to EcoSSB specific `ESWR' sequence. Biochemical characterization revealed that except for m beta 1 SSB, all chimeras and a control construct lacking the C-terminal domain (Delta C SSB) bound DNA in modes corresponding to limited and unlimited modes of binding. However, the DNA on MtuSSB may follow a different path than the EcoSSB. Structural probing by protease digestion revealed that unlike other SSBs used, m beta 1 SSB was also hypersensitive to chymotrypsin treatment. Further, to check for their biological activities, we developed a sensitive assay, and observed that m beta 1-beta 6, MtuSSB, m beta 1'beta 2 and m beta 1-beta 5 SSBs complemented E. coli Delta ssb in a dose dependent manner. Complementation by the m beta 1-beta 5 SSB was poor. In contrast, m beta 1'beta 2(ESWR) SSB complemented E. coli as well as EcoSSB. The inefficiently functioning SSBs resulted in an elongated cell/filamentation phenotype of E. coli. Taken together, our observations suggest that specific interactions within the DNA binding domain of the homotetrameric SSBs are crucial for their biological function.
Resumo:
Taking polycrystalline cadmium as an example and by utilizing the predicted temperature or strain rate-dependence of the (Hall-Petch) stress-grain size parameters, a reasonably quantitative explanation is given for the grain size dependence of apparent activation volume measurements. The explanation involves the theoretical relation of these measurements to single-crystal measurements.
Resumo:
Commercial purity (99.8%) magnesium single crystals were subjected to plane strain compression (PSC) along the c-axis at 200 and 370 degrees C and a constant strain rate of 10(-3) s(-1). Extension was confined to the < 1 1 (2) over bar 0 > direction and the specimens were strained up to a logarithmic true strain of -1. The initial rapid increase in flow stress was followed by significant work softening at different stresses and comparable strains of about -0.05 related to macroscopic twinning events. The microstructure of the specimen after PSC at 200 degrees C was characterized by a high density of {1 0 (1) over bar 1} and {1 0 (1) over bar 3} compression twins, some of which were recrystallized. After PSC at 370 degrees C, completely recrystallized twin bands were the major feature of the observed microstructure. All new grains in these bands retained the same c-axis orientation of their compression twin hosts. The basal plane in these grains was randomly rotated around the c-axis, forming a fiber texture component. The obtained results are discussed with respect to the mechanism of recrystallization, the specific character of the boundaries between new grains and the initial matrix, and the importance of the dynamically recrystallized bands for strain accommodation in these deformed magnesium single crystals. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
It is well known that enantiomers cannot be distinguished by NMR spectroscopy unless diastereomorphic interactions are imposed. Several chiral aligning media have therefore been reported for their visualization, although extensive studies are carried out using the liquid crystal made of polypeptide poly-γ-benzyl-L-glutamate (PBLG) in organic solvent. In PBLG medium the spin systems are weakly coupled and the first order analyses of the spectra are generally possible. But due to large number of pair wise interactions of nuclear spins resulting in many degenerate transitions the 1H NMR spectra are not only complex but also broad and featureless, in addition to an indistinguishable overlap of the spectra of enantiomers. This enormous loss of resolution severely hinders the analyses of proton spectra, even for spin systems with 5–6 interacting protons, thereby restricting itsroutine application. In this review we discuss our recently developed several one and multidimensional NMR experiments to circumvent these difficulties taking specific examples of the molecules containing a single chiral centre.
Resumo:
The transmission loss (TL) performance of spherical chambers having single inlet and multiple outlet is obtained analytically through modal expansion of acoustic field inside the spherical cavity in terms of the spherical Bessel functions and Legendre polynomials. The uniform piston driven model based upon the impedance [Z] matrix is used to characterize the multi-port spherical chamber. It is shown analytically that the [Z] parameters are independent of the azimuthal angle (phi) due to the axisymmetric shape of the sphere; rather, they depend only upon the polar angle (theta) and radius of the chamber R(0). Thus, the effects of relative polar angular location of the ports and number of outlet ports are investigated. The analytical results are shown to be in good agreement with the 3D FEA results, thereby validating the procedure suggested in this work.