895 resultados para Sight-singing


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter aims to provide an overview of building simulation in a theoretical and practical context. The following sections demonstrate the importance of simulation programs at a time when society is shifting towards a low carbon future and the practice of sustainable design becomes mandatory. The initial sections acquaint the reader with basic terminology and comment on the capabilities and categories of simulation tools before discussing the historical development of programs. The main body of the chapter considers the primary benefits and users of simulation programs, looks at the role of simulation in the construction process and examines the validity and interpretation of simulation results. The latter half of the chapter looks at program selection and discusses software capability, product characteristics, input data and output formats. The inclusion of a case study demonstrates the simulation procedure and key concepts. Finally, the chapter closes with a sight into the future, commenting on the development of simulation capability, user interfaces and how simulation will continue to empower building professionals as society faces new challenges in a rapidly changing landscape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Professionalism and professional institutions have developed and changed very gradually in recent decades, such that there are conflicting and competing definitions of what it means to be a professional. The direction of travel is examined through an institutional lens in terms of current trends and practices that have transformed professional life. At first sight, the evolution of professionalism appears to be developing into a new professionalism that requires less of professional institutions and more of the institutions of societal governance, such as contracts and statutes. These transformations are explored with reference to the need for a sustainable urban environment, showing that despite a reduced role of professional institutions, certain aspects of professionalism remain crucially important, especially in those jurisdictions where societal governance is not well developed. With the growing sophistication of legislation, insurance and commerce, the emphasis of what it means to be a professional is evolving. One key aspect of professionalism that is not usually listed in most texts is role definition and how this provides a sense of identity. Professionalism remains a relevant and important concept, but the exigencies of a sustainable urban environment transcend the objectives of the professions and demand a broader, collaborative and participative agenda.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The assumption that the most important aim of war is to create a better peace than existed before the war, i.e. a peace with justice, was self-evident for writers prior to Clausewitz. This does not mean that princes saw this as their priority, but theoreticians did. This changed dramatically with the Napoleonic Wars: Clausewitz initiated an era where writers on strategy paid no heed to what would come after military victory, now seen as the be-all and end-all of war. Terrible consequences flowed from this, and a series of ephemeral victories leading to new wars. It was only around the Second World War, to some in itself the consequence of this obsession with victory and not with peace, that it began to dawn on writers that peace, not military victory must be the ultimate aim to be kept in sight.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ketamine and propofol are two well-known, powerful anesthetic agents, yet at first sight this appears to be their only commonality. Ketamine is a dissociative anesthetic agent, whose main mechanism of action is considered to be N-methyl-D-aspartate (NMDA) antagonism; whereas propofol is a general anesthetic agent, which is assumed to primarily potentiate currents gated by γ-aminobutyric acid type A (GABAA) receptors. However, several experimental observations suggest a closer relationship. First, the effect of ketamine on the electroencephalogram (EEG) is markedly changed in the presence of propofol: on its own ketamine increases θ (4–8 Hz) and decreases α (8–13 Hz) oscillations, whereas ketamine induces a significant shift to beta band frequencies (13–30 Hz) in the presence of propofol. Second, both ketamine and propofol cause inhibition of the inward pacemaker current Ih, by binding to the corresponding hyperpolarization-activated cyclic nucleotide-gated potassium channel 1 (HCN1) subunit. The resulting effect is a hyperpolarization of the neuron’s resting membrane potential. Third, the ability of both ketamine and propofol to induce hypnosis is reduced in HCN1-knockout mice. Here we show that one can theoretically understand the observed spectral changes of the EEG based on HCN1-mediated hyperpolarizations alone, without involving the supposed main mechanisms of action of these drugs through NMDA and GABAA, respectively. On the basis of our successful EEG model we conclude that ketamine and propofol should be antagonistic to each other in their interaction at HCN1 subunits. Such a prediction is in accord with the results of clinical experiment in which it is found that ketamine and propofol interact in an infra-additive manner with respect to the endpoints of hypnosis and immobility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of slow vortical dynamics and its role in theoretical understanding is central to geophysical fluid dynamics. It leads, for example, to “potential vorticity thinking” (Hoskins et al. 1985). Mathematically, one imagines an invariant manifold within the phase space of solutions, called the slow manifold (Leith 1980; Lorenz 1980), to which the dynamics are constrained. Whether this slow manifold truly exists has been a major subject of inquiry over the past 20 years. It has become clear that an exact slow manifold is an exceptional case, restricted to steady or perhaps temporally periodic flows (Warn 1997). Thus the concept of a “fuzzy slow manifold” (Warn and Ménard 1986) has been suggested. The idea is that nearly slow dynamics will occur in a stochastic layer about the putative slow manifold. The natural question then is, how thick is this layer? In a recent paper, Ford et al. (2000) argue that Lighthill emission—the spontaneous emission of freely propagating acoustic waves by unsteady vortical flows—is applicable to the problem of balance, with the Mach number Ma replaced by the Froude number F, and that it is a fundamental mechanism for this fuzziness. They consider the rotating shallow-water equations and find emission of inertia–gravity waves at O(F2). This is rather surprising at first sight, because several studies of balanced dynamics with the rotating shallow-water equations have gone beyond second order in F, and found only an exponentially small unbalanced component (Warn and Ménard 1986; Lorenz and Krishnamurthy 1987; Bokhove and Shepherd 1996; Wirosoetisno and Shepherd 2000). We have no technical objection to the analysis of Ford et al. (2000), but wish to point out that it depends crucially on R 1, where R is the Rossby number. This condition requires the ratio of the characteristic length scale of the flow L to the Rossby deformation radius LR to go to zero in the limit F → 0. This is the low Froude number scaling of Charney (1963), which, while originally designed for the Tropics, has been argued to be also relevant to mesoscale dynamics (Riley et al. 1981). If L/LR is fixed, however, then F → 0 implies R → 0, which is the standard quasigeostrophic scaling of Charney (1948; see, e.g., Pedlosky 1987). In this limit there is reason to expect the fuzziness of the slow manifold to be “exponentially thin,” and balance to be much more accurate than is consistent with (algebraic) Lighthill emission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Recent evidence has shown that individuals with acute anorexia nervosa and those recovered have aberrant physiological responses to rewarding stimuli. We hypothesized that women recovered from anorexia nervosa would show aberrant neural responses to both rewarding and aversive disorder-relevant stimuli. Methods Using functional magnetic resonance imaging (fMRI), the neural response to the sight and flavor of chocolate, and their combination, in 15 women recovered from restricting-type anorexia nervosa and 16 healthy control subjects matched for age and body mass index was investigated. The neural response to a control aversive condition, consisting of the sight of moldy strawberries and a corresponding unpleasant taste, was also measured. Participants simultaneously recorded subjective ratings of “pleasantness,” “intensity,” and “wanting.” Results Despite no differences between the groups in subjective ratings, individuals recovered from anorexia nervosa showed increased neural response to the pleasant chocolate taste in the ventral striatum and pleasant chocolate sight in the occipital cortex. The recovered participants also showed increased neural response to the aversive strawberry taste in the insula and putamen and to the aversive strawberry sight in the anterior cingulate cortex and caudate. Conclusions Individuals recovered from anorexia nervosa have increased neural responses to both rewarding and aversive food stimuli. These findings suggest that even after recovery, women with anorexia nervosa have increased salience attribution to food stimuli. These results aid our neurobiological understanding and support the view that the neural response to reward may constitute a neural biomarker for anorexia nervosa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Selective serotonin reuptake inhibitors (SSRIs) are popular medications for anxiety and depression, but their effectiveness, particularly in patients with prominent symptoms of loss of motivation and pleasure, has been questioned. There are few studies of the effect of SSRIs on neural reward mechanisms in humans. Methods We studied 45 healthy participants who were randomly allocated to receive the SSRI citalopram, the noradrenaline reuptake inhibitor reboxetine, or placebo for 7 days in a double-blind, parallel group design. We used functional magnetic resonance imaging to measure the neural response to rewarding (sight and/or flavor of chocolate) and aversive stimuli (sight of moldy strawberries and/or an unpleasant strawberry taste) on the final day of drug treatment. Results Citalopram reduced activation to the chocolate stimuli in the ventral striatum and the ventral medial/orbitofrontal cortex. In contrast, reboxetine did not suppress ventral striatal activity and in fact increased neural responses within medial orbitofrontal cortex to reward. Citalopram also decreased neural responses to the aversive stimuli conditions in key “punishment” areas such as the lateral orbitofrontal cortex. Reboxetine produced a similar, although weaker effect. Conclusions Our findings are the first to show that treatment with SSRIs can diminish the neural processing of both rewarding and aversive stimuli. The ability of SSRIs to decrease neural responses to reward might underlie the questioned efficacy of SSRIs in depressive conditions characterized by decreased motivation and anhedonia and could also account for the experience of emotional blunting described by some patients during SSRI treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Abnormalities in the neural representation of rewarding and aversive stimuli have been well-described in patients with acute depression, and we previously found abnormal neural responses to rewarding and aversive sight and taste stimuli in recovered depressed patients. The aim of the present study was to determine whether similar abnormalities might be present in young people at increased familial risk of depression but with no personal history of mood disorder. Methods We therefore used functional magnetic resonance imaging to examine the neural responses to pleasant and aversive sights and tastes in 25 young people (16–21 years of age) with a biological parent with depression and 25 age- and gender-matched control subjects. Results We found that, relative to the control subjects, participants with a parental history of depression showed diminished responses in the orbitofrontal cortex to rewarding stimuli, whereas activations to aversive stimuli were increased in the lateral orbitofrontal cortex and insula. In anterior cingulate cortex the at-risk group showed blunted neural responses to both rewarding and aversive stimuli. Conclusions Our findings suggest that young people at increased familial risk of depression have altered neural representation of reward and punishment, particularly in cortical regions linked to the use of positive and negative feedback to guide adaptive behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the advent of wide-angle imaging of the inner heliosphere, a plethora of techniques have been developed to investigate the three-dimensional structure and kinematics of solar wind transients, such as coronal mass ejections, from their signatures in single- and multi-spacecraft imaging observations. These techniques, which range from the highly complex and computationally intensive to methods based on simple curve fitting, all have their inherent advantages and limitations. In the analysis of single-spacecraft imaging observations, much use has been made of the fixed φ fitting (FPF) and harmonic mean fitting (HMF) techniques, in which the solar wind transient is considered to be a radially propagating point source (fixed φ, FP, model) and a radially expanding circle anchored at Sun centre (harmonic mean, HM, model), respectively. Initially, we compare the radial speeds and propagation directions derived from application of the FPF and HMF techniques to a large set of STEREO/Heliospheric Imager (HI) observations. As the geometries on which these two techniques are founded constitute extreme descriptions of solar wind transients in terms of their extent along the line of sight, we describe a single-spacecraft fitting technique based on a more generalized model for which the FP and HM geometries form the limiting cases. In addition to providing estimates of a transient’s speed and propagation direction, the self-similar expansion fitting (SSEF) technique provides, in theory, the capability to estimate the transient’s angular extent in the plane orthogonal to the field of view. Using the HI observations, and also by performing a Monte Carlo simulation, we assess the potential of the SSEF technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coronal mass ejections (CMEs) can be continuously tracked through a large portion of the inner heliosphere by direct imaging in visible and radio wavebands. White light (WL) signatures of solar wind transients, such as CMEs, result from Thomson scattering of sunlight by free electrons and therefore depend on both viewing geometry and electron density. The Faraday rotation (FR) of radio waves from extragalactic pulsars and quasars, which arises due to the presence of such solar wind features, depends on the line-of-sight magnetic field component B ∥ and the electron density. To understand coordinated WL and FR observations of CMEs, we perform forward magnetohydrodynamic modeling of an Earth-directed shock and synthesize the signatures that would be remotely sensed at a number of widely distributed vantage points in the inner heliosphere. Removal of the background solar wind contribution reveals the shock-associated enhancements in WL and FR. While the efficiency of Thomson scattering depends on scattering angle, WL radiance I decreases with heliocentric distance r roughly according to the expression Ir –3. The sheath region downstream of the Earth-directed shock is well viewed from the L4 and L5 Lagrangian points, demonstrating the benefits of these points in terms of space weather forecasting. The spatial position of the main scattering site r sheath and the mass of plasma at that position M sheath can be inferred from the polarization of the shock-associated enhancement in WL radiance. From the FR measurements, the local B ∥sheath at r sheath can then be estimated. Simultaneous observations in polarized WL and FR can not only be used to detect CMEs, but also to diagnose their plasma and magnetic field properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale: Opioid antagonism reduces the consumption of palatable foods in humans but the neural substrates implicated in these effects are less well understood. Objectives: The aim of the present study was to examine the effects of the opioid antagonist, naltrexone, on neural response to rewarding and aversive sight and taste stimuli. Methods: We used functional magnetic resonance imaging (fMRI) to examine the neural responses to the sight and taste of pleasant (chocolate) and aversive (mouldy strawberry) stimuli in 20 healthy volunteers who received a single oral dose of naltrexone (50 mg) and placebo in a double-blind, repeated-measures cross-over, design. Results: Relative to placebo, naltrexone decreased reward activation to chocolate in the dorsal anterior cingulate cortex and caudate, and increased aversive-related activation to unpleasant strawberry in the amygdala and anterior insula. Conclusions: These findings suggest that modulation of key brain areas involved in reward processing, cognitive control and habit formation such as the dorsal anterior cingulate cortex (dACC) and caudate might underlie reduction in food intake with opioid antagonism. Furthermore we show for the first time that naltrexone can increase activations related to aversive food stimuli. These results support further investigation of opioid treatments in obesity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale: Pramipexole, a D2/D3 dopamine receptor agonist, has been implicated in the development of impulse control disorders in patients with Parkinson's disease. Investigation of single doses of pramipexole in healthy participants in reward-based learning tasks has shown inhibition of the neural processing of reward, presumptively through stimulation of dopamine autoreceptors. Objectives: This study aims to examine the effects of pramipexole on the neural response to the passive receipt of rewarding and aversive sight and taste stimuli. Methods: We used functional magnetic resonance imaging to examine the neural responses to the sight and taste of pleasant (chocolate) and aversive (mouldy strawberry) stimuli in 16 healthy volunteers who received a single dose of pramipexole (0.25 mg) and placebo in a double-blind, within-subject, design. Results: Relative to placebo, pramipexole treatment reduced blood oxygen level-dependent activation to the chocolate stimuli in the areas known to play a key role in reward, including the ventromedial prefrontal cortex, the orbitofrontal cortex, striatum, thalamus and dorsal anterior cingulate cortex. Pramipexole also reduced activation to the aversive condition in the dorsal anterior cingulate cortex. There were no effects of pramipexole on the subjective ratings of the stimuli. Conclusions: Our results are consistent with an ability of acute, low-dose pramipexole to diminish dopamine-mediated responses to both rewarding and aversive taste stimuli, perhaps through an inhibitory action of D2/3 autoreceptors on phasic burst activity of midbrain dopamine neurones. The ability of pramipexole to inhibit aversive processing might potentiate its adverse behavioural effects and could also play a role in its proposed efficacy in treatment-resistant depression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale: Animal studies indicate that dopamine pathways in the ventral striatum code for the motivational salience of both rewarding and aversive stimuli, but evidence for this mechanism in humans is less established. We have developed a functional magnetic resonance imaging (fMRI) model which permits examination of the neural processing of both rewarding and aversive stimuli. Objectives: The aim of the study was to determine the effect of the dopamine receptor antagonist, sulpiride, on the neural processing of rewarding and aversive stimuli in healthy volunteers. Methods: We studied 30 healthy participants who were randomly allocated to receive a single dose of sulpiride (400 mg) or placebo, in a double-blind, parallel-group design. We used fMRI to measure the neural response to rewarding (taste or sight of chocolate) and aversive stimuli (sight of mouldy strawberries or unpleasant strawberry taste) 4 h after drug treatment. Results: Relative to placebo, sulpiride reduced blood oxygenation level-dependent responses to chocolate stimuli in the striatum (ventral striatum) and anterior cingulate cortex. Sulpiride also reduced lateral orbitofrontal cortex and insula activations to the taste and sight of the aversive condition. Conclusions: These results suggest that acute dopamine receptor blockade modulates mesolimbic and mesocortical neural activations in response to both rewarding and aversive stimuli in healthy volunteers. This effect may be relevant to the effects of dopamine receptor antagonists in the treatment of psychosis and may also have implications for the possible antidepressant properties of sulpiride.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reduced subjective experience of reward (anhedonia) is a key symptom of major depression. The anti-obesity drug and cannabinoid type 1 receptor (CB(1)) antagonist, rimonabant, is associated with significant rates of depression and anxiety in clinical use and was recently withdrawn from the market because of these adverse effects. Using a functional magnetic resonance imaging (fMRI) model of reward we hypothesized that rimonabant would impair reward processing. Twenty-two healthy participants were randomly allocated to receive rimonabant (20 mg), or placebo, for 7 d in a double-blind, parallel group design. We used fMRI to measure the neural response to rewarding (sight and/or flavour of chocolate) and aversive (sight of mouldy strawberries and/or an unpleasant strawberry taste) stimuli on the final day of drug treatment. Rimonabant reduced the neural response to chocolate stimuli in key reward areas such as the ventral striatum and the orbitofrontal cortex. Rimonabant also decreased neural responses to the aversive stimulus condition in the caudate nucleus and ventral striatum, but increased lateral orbitofrontal activations to the aversive sight and taste of strawberry condition. Our findings are the first to show that the anti-obesity drug rimonabant inhibits the neural processing of rewarding food stimuli in humans. This plausibly underlies its ability to promote weight loss, but may also indicate a mechanism for inducing anhedonia which could lead to the increased risk of depressive symptomatology seen in clinical use. fMRI may be a useful method of screening novel agents for unwanted effects on reward and associated clinical adverse reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To examine the neural circuitry involved in food craving, in making food particularly appetitive and thus in driving wanting and eating, we used fMRI to measure the response to the flavour of chocolate, the sight of chocolate and their combination in cravers vs. non-cravers. Statistical parametric mapping (SPM) analyses showed that the sight of chocolate produced more activation in chocolate cravers than non-cravers in the medial orbitofrontal cortex and ventral striatum. For cravers vs. non-cravers, a combination of a picture of chocolate with chocolate in the mouth produced a greater effect than the sum of the components (i.e. supralinearity) in the medial orbitofrontal cortex and pregenual cingulate cortex. Furthermore, the pleasantness ratings of the chocolate and chocolate-related stimuli had higher positive correlations with the fMRI blood oxygenation level-dependent signals in the pregenual cingulate cortex and medial orbitofrontal cortex in the cravers than in the non-cravers. To our knowledge, this is the first study to show that there are differences between cravers and non-cravers in their responses to the sensory components of a craved food in the orbitofrontal cortex, ventral striatum and pregenual cingulate cortex, and that in some of these regions the differences are related to the subjective pleasantness of the craved foods. Understanding individual differences in brain responses to very pleasant foods helps in the understanding of the mechanisms that drive the liking for specific foods and thus intake of those foods.