996 resultados para Shear factor
Resumo:
The present discussion tries to bring out the importance of clay mineralogical composition of fine-grained soils on their liquid limit behaviour. It reinforces the author's observation that the undrained shear strengths at liquid limit water content and at plastic limit water content are not unique.
Resumo:
First-principles density functional theory has been used to evaluate the shear and cleavage strength in terms of Griffith work and generalized stacking fault energy (GSF) of (001) plane for gamma, gamma' and gamma-gamma' system as a function of distance from the gamma/gamma' interface. Calculation of Griffith work suggests higher cleavage energy for bulk gamma as compared to gamma' while the GSF calculation suggests higher shear strength for bulk gamma' as compared to gamma. It has been found that the shear strength of the cubic plane of the gamma/gamma' interface is marginally lower than those of bulk gamma and gamma' phases. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Background: mIHF belongs to a subfamily of proteins, distinct from E. coli IHF. Results: Functionally important amino acids of mIHF and the mechanism(s) underlying DNA binding, DNA bending, and site-specific recombination are distinct from that of E. coli IHF. Conclusion: mIHF functions could contribute beyond nucleoid compaction. Significance: Because mIHF is essential for growth, the molecular mechanisms identified here can be exploited in drug screening efforts. The annotated whole-genome sequence of Mycobacterium tuberculosis revealed that Rv1388 (Mtihf) is likely to encode for a putative 20-kDa integration host factor (mIHF). However, very little is known about the functional properties of mIHF or the organization of the mycobacterial nucleoid. Molecular modeling of the mIHF three-dimensional structure, based on the cocrystal structure of Streptomyces coelicolor IHF duplex DNA, a bona fide relative of mIHF, revealed the presence of Arg-170, Arg-171, and Arg-173, which might be involved in DNA binding, and a conserved proline (Pro-150) in the tight turn. The phenotypic sensitivity of Escherichia coli ihfA and ihfB strains to UV and methyl methanesulfonate could be complemented with the wild-type Mtihf but not its alleles bearing mutations in the DNA-binding residues. Protein-DNA interaction assays revealed that wild-type mIHF, but not its DNA-binding variants, binds with high affinity to fragments containing attB and attP sites and curved DNA. Strikingly, the functionally important amino acid residues of mIHF and the mechanism(s) underlying its binding to DNA, DNA bending, and site-specific recombination are fundamentally different from that of E. coli IHF. Furthermore, we reveal novel insights into IHF-mediated DNA compaction depending on the placement of its preferred binding sites; mIHF promotes DNA compaction into nucleoid-like or higher order filamentous structures. We therefore propose that mIHF is a distinct member of a subfamily of proteins that serve as essential cofactors in site-specific recombination and nucleoid organization and that these findings represent a significant advance in our understanding of the role(s) of nucleoid-associated proteins.
Resumo:
A few advanced bus-clamping pulse width modulation (ABCPWM) methods have been proposed recently for a three-phase inverter. With these methods, each phase is clamped, switched at nominal frequency, and switched at twice the nominal frequency in different regions of the fundamental cycle. This study proposes a generalised ABCPWM scheme, encompassing the few ABCPWM schemes that have been proposed and many more ABCPWM schemes that have not been reported yet. Furthermore, analytical closed-form expression is derived for the harmonic distortion factor corresponding to the generalised ABCPWM. This factor is independent of load parameters. The analytical expression derived here brings out the dependence of root-mean-square (RMS) current ripple on modulation index, and can be used to evaluate the RMS current ripple corresponding to any ABCPWM scheme. The analytical closed-form expression is validated experimentally in terms of measured weighted total harmonic distortion (THD) in line voltage (V-WTHD) and measured THD in line current (I-THD) on a 6 kW induction motor drive.
Resumo:
Motivated by the discrepancies noted recently between the theoretical calculations of the electromagnetic omega pi form factor and certain experimental data, we investigate this form factor using analyticity and unitarity in a framework known as the method of unitarity bounds. We use a QCD correlator computed on the spacelike axis by operator product expansion and perturbative QCD as input, and exploit unitarity and the positivity of its spectral function, including the two-pion contribution that can be reliably calculated using high-precision data on the pion form factor. From this information, we derive upper and lower bounds on the modulus of the omega pi form factor in the elastic region. The results provide a significant check on those obtained with standard dispersion relations, confirming the existence of a disagreement with experimental data in the region around 0.6 GeV.
Resumo:
By using the lower-bound theorem of the limit analysis in conjunction with finite elements and nonlinear optimization, bearing-capacity factors, N-c and N-gamma q, with an inclusion of pseudostatic horizontal seismic body forces, have been determined for a shallow embedded horizontal strip footing placed on sloping ground surface. The variation of N-c and N-gamma q with changes in slope angle (beta) for different values of seismic acceleration coefficient (k(h)) has been obtained. The analysis reveals that irrespective of ground inclination and the embedment depth of the footing, the factors N-c and N-gamma q decrease quite considerably with an increase in k(h). As compared with N-c, the factor N-gamma q is affected more extensively with changes in k(h) and beta. Unlike most of the results reported in literature for the seismic case, the present computational results take into account the shear resistance of soil mass above the footing level. An increase in the depth of the embedment leads to an increase in the magnitudes of both N-c and N-gamma q. (C) 2014 American Society of Civil Engineers.
Resumo:
Combustion instabilities can cause serious problems which limit the operating envelope of low-emission lean premixed combustion systems. Predicting the onset of combustion instability requires a description of the unsteady heat release driving the instability, i.e., the heat release response transfer function of the system. This study focuses on the analysis of fully coupled two-way interactions between a disturbance field and a laminar premixed flame that incorporates gas expansion effects by solving the conservation equations of a compressible fluid. Results of the minimum and maximum flame front deflections are presented to underline the impact of the hydrodynamic instability on the flame and the shear layer effect on the initial flame front wrinkling which is increased at decreasing gas expansion. These phenomena influence the magnitude of the burning area and burning area rate response of the flame at lower frequency excitation more drastically than reduced-order model (ROM) predictions even for low temperature ratios. It is shown that the general trend of the flame response magnitudes can be well captured at higher frequency excitation, where stretch effects are dominant. The phase response is influenced by the DL mechanism, which cannot be captured by the ROM, and by the resulting discrepancy in the flame pocket formation and annihilation process at the flame tip. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved,
Resumo:
Results from interface shear tests on sand-geosynthetic interfaces are examined in light of surface roughness of the interacting geosynthetic material. Three different types of interface shear tests carried out in the frame of direct shear-test setup are compared to understand the effect of parameters like box fixity and symmetry on the interface shear characteristics. Formation of shear bands close to the interface is visualized in the tests and the bands are analyzed using image-segmentation techniques in MATLAB. A woven geotextile with moderate roughness and a geomembrane with minimal roughness are used in the tests. The effect of surface roughness of the geosynthetic material on the formation of shear bands, movement of sand particles, and interface shear parameters are studied and compared through visual observations, image analyses, and image-segmentation techniques.
Resumo:
Insulin-like growth factors (IGFs) are essential for growth and survival that suppress apoptosis and promote cell cycle progression, angiogenesis, and metastatic activities in various cancers. The IGFs actions are mediated through the IGF-1 receptor that is involved in cell transformation induced by tumour. These effects depend on the bioavailability of IGFs, which is regulated by IGF binding proteins (IGFBPs). We describe here the role of the IGF system in cancer, proposing new strategies targeting this system. We have attempted to expand the general viewpoint on IGF-1R, its inhibitors, potential limitations of IGF-1R, antibodies and tyrosine kinase inhibitors, and IGFBP actions. This review discusses the emerging view that blocking IGF via IGFBP is a better option than blocking IGF receptors. This can lead to the development of novel cancer therapies.
Resumo:
Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m(3) to 10.3 kN/m(3) at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8 degrees to 33 degrees corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8 degrees to 55 degrees in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43. (c) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Actions of transforming growth factor-beta are largely context dependent. For instance, TGF-beta is growth inhibitory to epithelial cells and many tumor cell-lines while it stimulates the growth of mesenchymal cells. TGF-beta also activates fibroblast cells to a myofibroblastic phenotype. In order to understand how the responsiveness of fibroblasts to TGF-beta would change in the context of transformation, we have compared the differential gene regulation by TGF-beta in immortal fibroblasts (hFhTERT), transformed fibroblasts (hFhTERT-LTgRAS) and a human fibrosarcoma cell-line (HT1080). The analysis revealed regulation of 6735, 4163, and 3478 probe-sets by TGF-beta in hFhTERT, hFhTERT-LTgRAS and HT1080 cells respectively. Intriguingly, 5291 probe-sets were found to be either regulated in hFhTERT or hFhTERT-LTgRAS cells while 2274 probe-sets were regulated either in hFhTERT or HT1080 cells suggesting that the response of immortal hFhTERT cells to TGF-beta is vastly different compared to the response of both the transformed cells hFhTERT-LTgRAS and HT1080 to TGF-beta. Strikingly, WNT pathway showed enrichment in the hFhTERT cells in Gene Set Enrichment Analysis. Functional studies showed induction of WNT4 by TGF-beta in hFhTERT cells and TGF-beta conferred action of these cells was mediated by WNT4. While TGF-beta activated both canonical and non-canonical WNT pathways in hFhTERT cells, Erk1/2 and p38 Mitogen Activated Protein Kinase pathways were activated in hFhTERT-LTgRAS and HT1080 cells. This suggests that transformation of immortal hFhTERT cells by SV40 large T antigen and activated RAS caused a switch in their response to TGF-beta which matched with the response of HT1080 cells to TGF-beta. These data suggest context dependent activation of non-canonical signaling by TGF-beta. (C) 2015 Published by Elsevier Inc.
Resumo:
For obtaining dynamic response of structure to high frequency shock excitation spectral elements have several advantages over conventional methods. At higher frequencies transverse shear and rotary inertia have a predominant role. These are represented by the First order Shear Deformation Theory (FSDT). But not much work is reported on spectral elements with FSDT. This work presents a new spectral element based on the FSDT/Mindlin Plate Theory which is essential for wave propagation analysis of sandwich plates. Multi-transformation method is used to solve the coupled partial differential equations, i.e., Laplace transforms for temporal approximation and wavelet transforms for spatial approximation. The formulation takes into account the axial-flexure and shear coupling. The ability of the element to represent different modes of wave motion is demonstrated. Impact on the derived wave motion characteristics in the absence of the developed spectral element is discussed. The transient response using the formulated element is validated by the results obtained using Finite Element Method (FEM) which needs significant computational effort. Experimental results are provided which confirms the need to having the developed spectral element for the high frequency response of structures. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The cross-sectional stiffness matrix is derived for a pre-twisted, moderately thick beam made of transversely isotropic materials and having rectangular cross sections. An asymptotically-exact methodology is used to model the anisotropic beam from 3-D elasticity, without any further assumptions. The beam is allowed to have large displacements and rotations, but small strain is assumed. The strain energy is computed making use of the beam constitutive law and kinematical relations derived with the inclusion of geometrical nonlinearities and an initial twist. The energy functional is minimized making use of the Variational Asymptotic Method (VAM), thereby reducing the cross section to a point on the beam reference line with appropriate properties, forming a 1-D constitutive law. VAM is a mathematical technique employed in the current problem to rigorously split the 3-D analysis of beams into two: a 2-D analysis over the beam cross-sectional domain, which provides a compact semi-analytical form of the properties of the cross sections, and a nonlinear 1-D analysis of the beam reference curve. In this method, as applied herein, the cross-sectional analysis is performed asymptotically by taking advantage of a material small parameter and two geometric small parameters. 3-D strain components are derived using kinematics and arranged in orders of the small parameters. Closed-form expressions are derived for the 3-D non-linear warping and stress fields. Warping functions are obtained by the minimization of strain energy subject to certain set of constraints that render the 1-D strain measures well-defined. The zeroth-order 3-D warping field thus yielded is then used to integrate the 3-D strain energy density over the cross section, resulting in the 1-D strain energy density, which in turn helps identify the corresponding cross-sectional stiffness matrix. The model is capable of predicting interlaminar and transverse shear stresses accurately up to first order.
Resumo:
We perform numerical experiments to study the shear dynamo problem where we look for the growth of a large-scale magnetic field due to non-helical stirring at small scales in a background linear shear flow in previously unexplored parameter regimes. We demonstrate the large-scale dynamo action in the limit where the fluid Reynolds number (Re) is below unity while the magnetic Reynolds number (Rm) is above unity; the exponential growth rate scales linearly with shear, which is consistent with earlier numerical works. The limit of low Re is particularly interesting, as seeing the dynamo action in this limit would provide enough motivation for further theoretical investigations, which may focus attention on this analytically more tractable limit of Re < 1 compared to the more formidable limit of Re > 1. We also perform simulations in the regimes where (i) both (Re, Rm) < 1, and (ii) Re > 1 and Rm < 1, and compute all of the components of the turbulent transport coefficients (alpha(ij) and alpha(ij)) using the test-field method. A reasonably good agreement is observed between our results and the results of earlier analytical works in similar parameter regimes.
Resumo:
Transactivator protein C is required for the expression of bacteriophage Mu late genes from lys, I, P and mom promoters during lytic life cycle of the phage. The mechanism of transcription activation of mom gene by C protein is well understood. C activates transcription at Pmom by initial unwinding of the promoter DNA, thereby facilitating RNA polymerase (RNAP) recruitment. Subsequently, C interacts with the (sic) subunit of RNAP to enhance promoter clearance. The mechanism by which C activates other late genes of the phage is not known. We carried out promoter-polymerase interaction studies with all the late gene promoters to determine the individual step of C mediated activation. Unlike at P-mom, at the other three promoters, RNAP recruitment and closed complex formation are not C dependent. Instead, the action of C at P-lys, P-I, and P-P is during the isomerization from closed complex to open complex with no apparent effect at other steps of initiation pathway. The mechanism of transcription activation of mom and other late promoters by their common activator is different. This distinction in the mode of activation (promoter recruitment and escape versus isomerization) by the same activator at different promoters appears to be important for optimized expression of each of the late genes.