803 resultados para Sensor Networks and Data Streaming
Resumo:
A novel architecture for microwave/millimeter-wave signal generation and data modulation using a fiber-grating-based distributed feedback laser has been proposed in this letter. For demonstration, a 155.52-Mb/s data stream on a 16.9-GHz subcarrier has been transmitted and recovered successfully. It has been proved that this technology would be of benefit to future microwave data transmission systems. © 2006 IEEE.
Resumo:
Contrast sensitivity improves with the area of a sine-wave grating, but why? Here we assess this phenomenon against contemporary models involving spatial summation, probability summation, uncertainty, and stochastic noise. Using a two-interval forced-choice procedure we measured contrast sensitivity for circular patches of sine-wave gratings with various diameters that were blocked or interleaved across trials to produce low and high extrinsic uncertainty, respectively. Summation curves were steep initially, becoming shallower thereafter. For the smaller stimuli, sensitivity was slightly worse for the interleaved design than for the blocked design. Neither area nor blocking affected the slope of the psychometric function. We derived model predictions for noisy mechanisms and extrinsic uncertainty that was either low or high. The contrast transducer was either linear (c1.0) or nonlinear (c2.0), and pooling was either linear or a MAX operation. There was either no intrinsic uncertainty, or it was fixed or proportional to stimulus size. Of these 10 canonical models, only the nonlinear transducer with linear pooling (the noisy energy model) described the main forms of the data for both experimental designs. We also show how a cross-correlator can be modified to fit our results and provide a contemporary presentation of the relation between summation and the slope of the psychometric function.
Resumo:
Supply Chain Risk Management (SCRM) has become a popular area of research and study in recent years. This can be highlighted by the number of peer reviewed articles that have appeared in academic literature. This coupled with the realisation by companies that SCRM strategies are required to mitigate the risks that they face, makes for challenging research questions in the field of risk management. The challenge that companies face today is not only to identify the types of risks that they face, but also to assess the indicators of risk that face them. This will allow them to mitigate that risk before any disruption to the supply chain occurs. The use of social network theory can aid in the identification of disruption risk. This thesis proposes the combination of social networks, behavioural risk indicators and information management, to uniquely identify disruption risk. The propositions that were developed from the literature review and exploratory case study in the aerospace OEM, in this thesis are:- By improving information flows, through the use of social networks, we can identify supply chain disruption risk. - The management of information to identify supply chain disruption risk can be explored using push and pull concepts. The propositions were further explored through four focus group sessions, two within the OEM and two within an academic setting. The literature review conducted by the researcher did not find any studies that have evaluated supply chain disruption risk management in terms of social network analysis or information management studies. The evaluation of SCRM using these methods is thought to be a unique way of understanding the issues in SCRM that practitioners face today in the aerospace industry.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fiber span with strongly reduced signal power excursion. The resulting fiber waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing. © 2005 IEEE.
Resumo:
High-speed optical clock recovery, demultiplexing and data regeneration will be integral parts of any future photonic network based on high bit-rate OTDM. Much research has been conducted on devices that perform these functions, however to date each process has been demonstrated independently. A very promising method of all-optical switching is that of a semiconductor optical amplifier-based nonlinear optical loop mirror (SOA-NOLM). This has various advantages compared with the standard fiber NOLM, most notably low switching power, compact size and stability. We use the SOA-NOLM as an all-optical mixer in a classical phase-locked loop arrangement to achieve optical clock recovery, while at the same time achieving data regeneration in a single compact device
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fibre span with strongly reduced signal power excursion. The resulting fibre waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
This thesis describes advances in the characterisation, calibration and data processing of optical coherence tomography (OCT) systems. Femtosecond (fs) laser inscription was used for producing OCT-phantoms. Transparent materials are generally inert to infra-red radiations, but with fs lasers material modification occurs via non-linear processes when the highly focused light source interacts with the materials. This modification is confined to the focal volume and is highly reproducible. In order to select the best inscription parameters, combination of different inscription parameters were tested, using three fs laser systems, with different operating properties, on a variety of materials. This facilitated the understanding of the key characteristics of the produced structures with the aim of producing viable OCT-phantoms. Finally, OCT-phantoms were successfully designed and fabricated in fused silica. The use of these phantoms to characterise many properties (resolution, distortion, sensitivity decay, scan linearity) of an OCT system was demonstrated. Quantitative methods were developed to support the characterisation of an OCT system collecting images from phantoms and also to improve the quality of the OCT images. Characterisation methods include the measurement of the spatially variant resolution (point spread function (PSF) and modulation transfer function (MTF)), sensitivity and distortion. Processing of OCT data is a computer intensive process. Standard central processing unit (CPU) based processing might take several minutes to a few hours to process acquired data, thus data processing is a significant bottleneck. An alternative choice is to use expensive hardware-based processing such as field programmable gate arrays (FPGAs). However, recently graphics processing unit (GPU) based data processing methods have been developed to minimize this data processing and rendering time. These processing techniques include standard-processing methods which includes a set of algorithms to process the raw data (interference) obtained by the detector and generate A-scans. The work presented here describes accelerated data processing and post processing techniques for OCT systems. The GPU based processing developed, during the PhD, was later implemented into a custom built Fourier domain optical coherence tomography (FD-OCT) system. This system currently processes and renders data in real time. Processing throughput of this system is currently limited by the camera capture rate. OCTphantoms have been heavily used for the qualitative characterization and adjustment/ fine tuning of the operating conditions of OCT system. Currently, investigations are under way to characterize OCT systems using our phantoms. The work presented in this thesis demonstrate several novel techniques of fabricating OCT-phantoms and accelerating OCT data processing using GPUs. In the process of developing phantoms and quantitative methods, a thorough understanding and practical knowledge of OCT and fs laser processing systems was developed. This understanding leads to several novel pieces of research that are not only relevant to OCT but have broader importance. For example, extensive understanding of the properties of fs inscribed structures will be useful in other photonic application such as making of phase mask, wave guides and microfluidic channels. Acceleration of data processing with GPUs is also useful in other fields.
Resumo:
* The work is partially supported by Grant no. NIP917 of the Ministry of Science and Education – Republic of Bulgaria.
Resumo:
IEEE 802.15.4 networks has the features of low data rate and low power consumption. It is a strong candidate technique for wireless sensor networks and can find many applications to smart grid. However, due to the low network and energy capacities it is critical to maximize the bandwidth and energy efficiencies of 802.15.4 networks. In this paper we propose an adaptive data transmission scheme with CSMA/CA access control, for applications which may have heavy traffic loads such as smart grids. The adaptive access control is simple to implement. Its compatibility with legacy 802.15.4 devices can be maintained. Simulation results demonstrate the effectiveness of the proposed scheme with largely improved bandwidth and power efficiency. © 2013 International Information Institute.
Resumo:
We show theoretically and experimentally a mechanismbehind the emergence of wide or bimodal protein distributions in biochemical networks with nonlinear input-output characteristics (the dose-response curve) and variability in protein abundance. Large cell-to-cell variation in the nonlinear dose-response characteristics can be beneficial to facilitate two distinct groups of response levels as opposed to a graded response. Under the circumstances that we quantify mathematically, the two distinct responses can coexist within a cellular population, leading to the emergence of a bimodal protein distribution. Using flow cytometry, we demonstrate the appearance of wide distributions in the hypoxia-inducible factor-mediated response network in HCT116 cells. With help of our theoretical framework, we perform a novel calculation of the magnitude of cell-to-cell heterogeneity in the dose-response obtained experimentally. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Resumo:
Accurate measurement of intervertebral kinematics of the cervical spine can support the diagnosis of widespread diseases related to neck pain, such as chronic whiplash dysfunction, arthritis, and segmental degeneration. The natural inaccessibility of the spine, its complex anatomy, and the small range of motion only permit concise measurement in vivo. Low dose X-ray fluoroscopy allows time-continuous screening of cervical spine during patient's spontaneous motion. To obtain accurate motion measurements, each vertebra was tracked by means of image processing along a sequence of radiographic images. To obtain a time-continuous representation of motion and to reduce noise in the experimental data, smoothing spline interpolation was used. Estimation of intervertebral motion for cervical segments was obtained by processing patient's fluoroscopic sequence; intervertebral angle and displacement and the instantaneous centre of rotation were computed. The RMS value of fitting errors resulted in about 0.2 degree for rotation and 0.2 mm for displacements. © 2013 Paolo Bifulco et al.
Resumo:
The paper presents in brief the “2nd Generation Open Access Infrastructure for Research in Europe” project (http://www.openaire.eu/) and what is done in Bulgaria during the last year in the area of open access to scientific information and data.
Resumo:
This paper presents the results of our data mining study of Pb-Zn (lead-zinc) ore assay records from a mine enterprise in Bulgaria. We examined the dataset, cleaned outliers, visualized the data, and created dataset statistics. A Pb-Zn cluster data mining model was created for segmentation and prediction of Pb-Zn ore assay data. The Pb-Zn cluster data model consists of five clusters and DMX queries. We analyzed the Pb-Zn cluster content, size, structure, and characteristics. The set of the DMX queries allows for browsing and managing the clusters, as well as predicting ore assay records. A testing and validation of the Pb-Zn cluster data mining model was developed in order to show its reasonable accuracy before beingused in a production environment. The Pb-Zn cluster data mining model can be used for changes of the mine grinding and floatation processing parameters in almost real-time, which is important for the efficiency of the Pb-Zn ore beneficiation process. ACM Computing Classification System (1998): H.2.8, H.3.3.
Resumo:
This work was supported in part by the EU „2nd Generation Open Access Infrastructure for Research in Europe" (OpenAIRE+). The autumn training school Development and Promotion of Open Access to Scientific Information and Research is organized in the frame of the Fourth International Conference on Digital Presentation and Preservation of Cultural and Scientific Heritage—DiPP2014 (September 18–21, 2014, Veliko Tarnovo, Bulgaria, http://dipp2014.math.bas.bg/), organized under the UNESCO patronage. The main organiser is the Institute of Mathematics and Informatics, Bulgarian Academy of Sciences with the support of EU project FOSTER (http://www.fosteropenscience.eu/) and the P. R. Slaveykov Regional Public Library in Veliko Tarnovo, Bulgaria.