969 resultados para Selective Laser Melting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present article reviews some of the current work on a new class of materials which are nanoscale granular materials. We shall discuss in this paper two phase granular materials where one of the phases having nanometric dimension is embedded in a matrix of larger dimension. Known as nanoembedded materials, nanocomposites or ultrafine granular materials, this class of materials has attracted attention because of the opportunity of basic studies on the effect of size and embedding matrix on transformation behaviors as well as some novel properties, which include structural, magnetic and transport properties. These are in addition to the tremendous interests in what is known as quantum structures(embedded particles size less than 5 nm) for the case of semiconductors, which will not be discussed here. We shall primarily review the work done on metallic systems where the dispersed phases have low melting points and borrow extensively from the work done in our group. The phase transformations of the embedded particles show distinctive behavior and yield new insights. We shall first highlight briefly the strategy of synthesis of these materials by non-equilibrium processing techniques, which will be followed by examples where the effect of length scales on phase transformation behaviors like melting and solidification are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of (1-x)Pb(Mg1/3Nb2/3)O-3 - xPbTiO(3) (x = 0.1 to 0.3)(PMN-PT) were deposited on the platinum coated silicon substrate by pulsed excimer laser ablation technique. A template layer of LaSr0.5Co0.5O3 (LSCO) was deposited on platinum substrate prior to the deposition of PMN-PT thin films. The composition and the structure of the films were modulated via proper variation of the deposition parameter such as substrate temperature, laser fluence and thickness of the template layers. We observed the impact of the thickness of LSCO template layer on the orientation of the films. A room temperature dielectric constant varying from 2000 to 4500 was noted for different composition of the films. The dielectric properties of the films were studied over the frequency range of 100 Hz - 100 kHz over a wide range of temperatures. The films exhibited the relaxor- type behavior that was characterized by the frequency dispersion of the temperature of dielectric constant maxima (T-m) and also diffuse phase transition. C1 Indian Inst Sci, Mat Res Ctr, Bangalore, Karnataka 560012 India.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the formation omega phase in the remelted layers during laser cladding and remelting of quasicrystal forming Al65Cu23.3Fe11.7 alloy on pure aluminum. The omega phase is absent in the clad layers. In the remelted layer, the phase nucleates at the periphery of the primary icosahedral phase particles. A large number of omega phase particles forms enveloping the icosahedral phase growing into aluminum rich melt, which solidify as alpha-Al solid solution. On the other side it develops an interface with aluminum. A detailed transmission electron microscopic analysis shows that omega phase exhibits orientation relationship with icosahedral phase. The composition analysis performed using energy dispersive x-ray analyzer suggests that this phase has composition higher aluminum than the icosahedral phase. The analysis of the available phase diagram information indicates that the present results represent large departure from equilibrium conditions. A possible scenario of the evolution of the omega phase has been suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As-prepared single-walled carbon nanotubes (SWNTs) are generally mixtures of semiconducting and metallic species, the proportion of the former being around 67%. Since most applications of SWNTs are best served by semiconducting or metallic nanotubes, rather than by mixtures of the two, methods which would directly yield semiconducting and metallic SWNTs in pure form are desirable. In this article, we present the available methods for the direct synthesis of such SWNTs along with the methods available to separate semiconducting and metallic SWNTs from mixtures. We also discuss the synthesis of Y-junction carbon nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bacterium Bacillus polymyxa was found to be capable of selective removal of calcium and iron from bauxite. The bioleached residue was found to be enriched in its alumina content with insignificant amounts of iron and calcium as impurities. The developed bio- process was found to be capable of producing a bauxite product which meets the specifica- tions as a raw material for the manufacture of alumina based ceramics and refractories. The role of bacterial cells and metabolic products in the selective dissolution of calcium (present as calcite) and iron (present as hematite and goethite) from bauxite was assessed and possi- ble mechanisms illustrated. The effect of different parameters such as sucrose concentra- tion, pH, pulp density and time on selective biodissolution was studied. It was observed that periodic decantation and replenishment of the leach medium was beneficial in improving the dissolution kinetics. Calcium removal involves chelation with bacterial exopolysaccha- tides and acidolysis by organic acid generation. Hematite could be solubilized through a reductive dissolution mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spectral characteristics of a diode laser are significantly affected due to interference caused between the laser diode output and the optical feedback in the external-cavity. This optical feedback effect is of practical use for linewidth reduction, tuning or for sensing applications. A sensor based on this effect is attractive due to its simplicity, low cost and compactness. This optical sensor has been used so far, in different configuration such as for sensing displacement induced by different parameters. In this paper we report a compact optical sensor consisting of a semiconductor laser coupled to an external cavity. Theoretical analysis of the self- mixing interference for optical sensing applications is given for moderate optical feedback case. A comparison is made with our experimental observations. Experimental results are in good agreement with the simulated power modulation based on self-mixing interference theory. Displacements as small as 10-4 nm have been measured using this sensor. The developed sensor showed a fringe sensitivity of one fringe per 400nm displacement for reflector distance of around 10cms. The sensor has also been tested for magnetic field and temperature induced displacement measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the jump in resistance at the melting transition, which is experimentally observed to be constant, independent of magnetic field (vortex density). We present an explanation of this effect based on vortex cuttings, and universalities of the structure factor at the freezing transition (the Hansen-Verlet criterion).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the magnetic field dependent rf (20 MHz) losses in Bi2Sr2CaCu2O8 single crystals in the low field and high temperature regime. Above HCl the dissipation begins to decrease as the field is increased and exhibits a minimum at HM>HCl. For H>HM the loss increases monotonically. We attribute the decrease in loss above HCl to the stiffening of the vortex lines due to the attractive electromagnetic interaction between the 2D vortices (that comprise the vortex line at low fields) in adjacent CuO bilayers. The minimum at HM implies that the vortex lines are stiffest and hence represents a transition into vortex solid state from the narrow vortex liquid in the vicinity of HCl. The increase in loss for H>HM marks the melting of the vortex lattice and hence a second transition into vortex liquid regime. We discuss our results in the light of recent theory of reentrant melting of the vortex lattice by G. Blatter et al. (Phys. Rev. B 54, 72 (1996)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the shape transformation of ZnO nanorods/nanotubes at temperatures (similar to 700 degrees C) much lower than the bulk melting temperature (1975 degrees C). With increasing annealing temperature, not only does shape transformation take place but the luminescence characteristics of ZnO are also modified. It is proposed that the observed shape transformation is due to surface diffusion, contradicting the previously reported notion of melting and its link to luminescence. Luminescence in the green-to-red region is observed when excited with a blue laser, indicating the conversion of blue to white light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation in temperature and concentration plays a crucial role in predicting the final microstructure during solidification of a binary alloy. Most of the experimental techniques used to measure concentration and temperature are intrusive in nature and affect the flow field. In this paper, the main focus is laid on in-situ, non-intrusive, transient measurement of concentration and temperature during the solidification of a binary mixture of aqueous ammonium chloride solution (a metal-analog system) in a top cooled cavity using laser based Mach-Zehnder Interferometric technique. It was found from the interferogram, that the angular deviation of fringe pattern and the total number of fringes exhibit significant sensitivity to refractive index and hence are functions of the local temperature and concentration of the NH4Cl solution inside the cavity. Using the fringe characteristics, calibration curves were established for the range of temperature and concentration levels expected during the solidification process. In the actual solidification experiment, two hypoeutectic solutions (5% and 15% NH4Cl) were chosen. The calibration curves were used to determine the temperature and concentration of the solution inside the cavity during solidification of 5% and 15% NH4Cl solution at different instants of time. The measurement was carried out at a fixed point in the cavity, and the concentration variation with time was recorded as the solid-liquid interface approached the measurement point. The measurement exhibited distinct zones of concentration distribution caused by solute rejection and Rayleigh Benard convection. Further studies involving flow visualization with laser scattering confirmed the Rayleigh Benard convection. Computational modeling was also performed, which corroborated the experimental findings. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study reports a two dimensional NMR experiment which separates single quantum spectra of enantiomers from that of a racemic mixture. This is a blend of selective double quantum refocusing, for resolving couplings and chemical shift interactions along two dimensions followed by correlation of the selectively excited protons to the entire coupled spin network. The concept is solely based on the presence of distinct intra methyl dipolar couplings of different enantiomers when dissolved in chiral orienting media. The analysis of single enantiomer spectrum obtained from respective F-2 cross sections yield all the spectral information. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A careful comparison of the experimental results reported in the literature reveals different variations of the melting temperature even for the same materials. Though there are different theoretical models, thermodynamic model has been extensively used to understand different variations of size-dependent melting of nanoparticles. There are different hypotheses such as homogeneous melting (HMH), liquid nucleation and growth (LNG) and liquid skin melting (LSM) to resolve different variations of melting temperature as reported in the literature. HMH and LNG account for the linear variation where as LSM is applied to understand the nonlinear behaviour in the plot of melting temperature against reciprocal of particle size. However, a bird's eye view reveals that either HMH or LSM has been extensively used by experimentalists. It has also been observed that not a single hypothesis can explain the size-dependent melting in the complete range. Therefore we describe an approach which can predict the plausible hypothesis for a given data set of the size-dependent melting temperature. A variety of data have been analyzed to ascertain the hypothesis and to test the approach.