687 resultados para Segmented polyurethanes
Resumo:
Image content interpretation is much dependent on segmentations efficiency. Requirements for the image recognition applications lead to a nessesity to create models of new type, which will provide some adaptation between law-level image processing, when images are segmented into disjoint regions and features are extracted from each region, and high-level analysis, using obtained set of all features for making decisions. Such analysis requires some a priori information, measurable region properties, heuristics, and plausibility of computational inference. Sometimes to produce reliable true conclusion simultaneous processing of several partitions is desired. In this paper a set of operations with obtained image segmentation and a nested partitions metric are introduced.
Resumo:
Purpose: To evaluate the effect of reducing the number of visual acuity measurements made in a defocus curve on the quality of data quantified. Setting: Midland Eye, Solihull, United Kingdom. Design: Evaluation of a technique. Methods: Defocus curves were constructed by measuring visual acuity on a distance logMAR letter chart, randomizing the test letters between lens presentations. The lens powers evaluated ranged between +1.50 diopters (D) and -5.00 D in 0.50 D steps, which were also presented in a randomized order. Defocus curves were measured binocularly with the Tecnis diffractive, Rezoom refractive, Lentis rotationally asymmetric segmented (+3.00 D addition [add]), and Finevision trifocal multifocal intraocular lenses (IOLs) implanted bilaterally, and also for the diffractive IOL and refractive or rotationally asymmetric segmented (+3.00 D and +1.50 D adds) multifocal IOLs implanted contralaterally. Relative and absolute range of clear-focus metrics and area metrics were calculated for curves fitted using 0.50 D, 1.00 D, and 1.50 D steps and a near add-specific profile (ie, distance, half the near add, and the full near-add powers). Results: A significant difference in simulated results was found in at least 1 of the relative or absolute range of clear-focus or area metrics for each of the multifocal designs examined when the defocus-curve step size was increased (P<.05). Conclusion: Faster methods of capturing defocus curves from multifocal IOL designs appear to distort the metric results and are therefore not valid. Financial Disclosure: No author has a financial or proprietary interest in any material or method mentioned. © 2013 ASCRS and ESCRS.
Resumo:
In this paper, a new method for offline handwriting recognition is presented. A robust algorithm for handwriting segmentation has been described here with the help of which individual characters can be segmented from a word selected from a paragraph of handwritten text image which is given as input to the module. Then each of the segmented characters are converted into column vectors of 625 values that are later fed into the advanced neural network setup that has been designed in the form of text files. The networks has been designed with quadruple layered neural network with 625 input and 26 output neurons each corresponding to a character from a-z, the outputs of all the four networks is fed into the genetic algorithm which has been developed using the concepts of correlation, with the help of this the overall network is optimized with the help of genetic algorithm thus providing us with recognized outputs with great efficiency of 71%.
Resumo:
The aim of this study is to evaluate the application of ensemble averaging to the analysis of electromyography recordings under whole body vibratory stimulation. Recordings from Rectus Femoris, collected during vibratory stimulation at different frequencies, are used. Each signal is subdivided in intervals, which time duration is related to the vibration frequency. Finally the average of the segmented intervals is performed. By using this method for the majority of the recordings the periodic components emerge. The autocorrelation of few seconds of signals confirms the presence of a pseudosinusoidal components strictly related to the soft tissues oscillations caused by the mechanical waves. © 2014 IEEE.
Resumo:
Data fluctuation in multiple measurements of Laser Induced Breakdown Spectroscopy (LIBS) greatly affects the accuracy of quantitative analysis. A new LIBS quantitative analysis method based on the Robust Least Squares Support Vector Machine (RLS-SVM) regression model is proposed. The usual way to enhance the analysis accuracy is to improve the quality and consistency of the emission signal, such as by averaging the spectral signals or spectrum standardization over a number of laser shots. The proposed method focuses more on how to enhance the robustness of the quantitative analysis regression model. The proposed RLS-SVM regression model originates from the Weighted Least Squares Support Vector Machine (WLS-SVM) but has an improved segmented weighting function and residual error calculation according to the statistical distribution of measured spectral data. Through the improved segmented weighting function, the information on the spectral data in the normal distribution will be retained in the regression model while the information on the outliers will be restrained or removed. Copper elemental concentration analysis experiments of 16 certified standard brass samples were carried out. The average value of relative standard deviation obtained from the RLS-SVM model was 3.06% and the root mean square error was 1.537%. The experimental results showed that the proposed method achieved better prediction accuracy and better modeling robustness compared with the quantitative analysis methods based on Partial Least Squares (PLS) regression, standard Support Vector Machine (SVM) and WLS-SVM. It was also demonstrated that the improved weighting function had better comprehensive performance in model robustness and convergence speed, compared with the four known weighting functions.
Resumo:
We propose a novel template matching approach for the discrimination of handwritten and machine-printed text. We first pre-process the scanned document images by performing denoising, circles/lines exclusion and word-block level segmentation. We then align and match characters in a flexible sized gallery with the segmented regions, using parallelised normalised cross-correlation. The experimental results over the Pattern Recognition & Image Analysis Research Lab-Natural History Museum (PRImA-NHM) dataset show remarkably high robustness of the algorithm in classifying cluttered, occluded and noisy samples, in addition to those with significant high missing data. The algorithm, which gives 84.0% classification rate with false positive rate 0.16 over the dataset, does not require training samples and generates compelling results as opposed to the training-based approaches, which have used the same benchmark.
Resumo:
Heterogeneity of labour and its implications for the Marxian theory of value has been one of the most controversial issues in the literature of the Marxist political economy. The adoption of Marx's conjecture about a uniform rate of surplus value leads to a simultaneous determination of the values of common and labour commodities of different types and the uniform rate of surplus value. Determination of these variables can be formally represented as a parametric cigenvalue problem. Morishima's and Bródy's earlier results are analysed and given new interpretations in the light of the suggested procedure. The main questions are addressed in a more general context too. The analysis is extended to the problem of segmented labour market, as well.
Resumo:
Moving objects database systems are the most challenging sub-category among Spatio-Temporal database systems. A database system that updates in real-time the location information of GPS-equipped moving vehicles has to meet even stricter requirements. Currently existing data storage models and indexing mechanisms work well only when the number of moving objects in the system is relatively small. This dissertation research aimed at the real-time tracking and history retrieval of massive numbers of vehicles moving on road networks. A total solution has been provided for the real-time update of the vehicles' location and motion information, range queries on current and history data, and prediction of vehicles' movement in the near future. ^ To achieve these goals, a new approach called Segmented Time Associated to Partitioned Space (STAPS) was first proposed in this dissertation for building and manipulating the indexing structures for moving objects databases. ^ Applying the STAPS approach, an indexing structure of associating a time interval tree to each road segment was developed for real-time database systems of vehicles moving on road networks. The indexing structure uses affordable storage to support real-time data updates and efficient query processing. The data update and query processing performance it provides is consistent without restrictions such as a time window or assuming linear moving trajectories. ^ An application system design based on distributed system architecture with centralized organization was developed to maximally support the proposed data and indexing structures. The suggested system architecture is highly scalable and flexible. Finally, based on a real-world application model of vehicles moving in region-wide, main issues on the implementation of such a system were addressed. ^
Resumo:
Recent advances in airborne Light Detection and Ranging (LIDAR) technology allow rapid and inexpensive measurements of topography over large areas. Airborne LIDAR systems usually return a 3-dimensional cloud of point measurements from reflective objects scanned by the laser beneath the flight path. This technology is becoming a primary method for extracting information of different kinds of geometrical objects, such as high-resolution digital terrain models (DTMs), buildings and trees, etc. In the past decade, LIDAR gets more and more interest from researchers in the field of remote sensing and GIS. Compared to the traditional data sources, such as aerial photography and satellite images, LIDAR measurements are not influenced by sun shadow and relief displacement. However, voluminous data pose a new challenge for automated extraction the geometrical information from LIDAR measurements because many raster image processing techniques cannot be directly applied to irregularly spaced LIDAR points. ^ In this dissertation, a framework is proposed to filter out information about different kinds of geometrical objects, such as terrain and buildings from LIDAR automatically. They are essential to numerous applications such as flood modeling, landslide prediction and hurricane animation. The framework consists of several intuitive algorithms. Firstly, a progressive morphological filter was developed to detect non-ground LIDAR measurements. By gradually increasing the window size and elevation difference threshold of the filter, the measurements of vehicles, vegetation, and buildings are removed, while ground data are preserved. Then, building measurements are identified from no-ground measurements using a region growing algorithm based on the plane-fitting technique. Raw footprints for segmented building measurements are derived by connecting boundary points and are further simplified and adjusted by several proposed operations to remove noise, which is caused by irregularly spaced LIDAR measurements. To reconstruct 3D building models, the raw 2D topology of each building is first extracted and then further adjusted. Since the adjusting operations for simple building models do not work well on 2D topology, 2D snake algorithm is proposed to adjust 2D topology. The 2D snake algorithm consists of newly defined energy functions for topology adjusting and a linear algorithm to find the minimal energy value of 2D snake problems. Data sets from urbanized areas including large institutional, commercial, and small residential buildings were employed to test the proposed framework. The results demonstrated that the proposed framework achieves a very good performance. ^
Resumo:
Exchange rate economics has achieved substantial development in the past few decades. Despite extensive research, a large number of unresolved problems remain in the exchange rate debate. This dissertation studied three puzzling issues aiming to improve our understanding of exchange rate behavior. Chapter Two used advanced econometric techniques to model and forecast exchange rate dynamics. Chapter Three and Chapter Four studied issues related to exchange rates using the theory of New Open Economy Macroeconomics. ^ Chapter Two empirically examined the short-run forecastability of nominal exchange rates. It analyzed important empirical regularities in daily exchange rates. Through a series of hypothesis tests, a best-fitting fractionally integrated GARCH model with skewed student-t error distribution was identified. The forecasting performance of the model was compared with that of a random walk model. Results supported the contention that nominal exchange rates seem to be unpredictable over the short run in the sense that the best-fitting model cannot beat the random walk model in forecasting exchange rate movements. ^ Chapter Three assessed the ability of dynamic general-equilibrium sticky-price monetary models to generate volatile foreign exchange risk premia. It developed a tractable two-country model where agents face a cash-in-advance constraint and set prices to the local market; the exogenous money supply process exhibits time-varying volatility. The model yielded approximate closed form solutions for risk premia and real exchange rates. Numerical results provided quantitative evidence that volatile risk premia can endogenously arise in a new open economy macroeconomic model. Thus, the model had potential to rationalize the Uncovered Interest Parity Puzzle. ^ Chapter Four sought to resolve the consumption-real exchange rate anomaly, which refers to the inability of most international macro models to generate negative cross-correlations between real exchange rates and relative consumption across two countries as observed in the data. While maintaining the assumption of complete asset markets, this chapter introduced endogenously segmented asset markets into a dynamic sticky-price monetary model. Simulation results showed that such a model could replicate the stylized fact that real exchange rates tend to move in an opposite direction with respect to relative consumption. ^
Resumo:
This dissertation introduces a new system for handwritten text recognition based on an improved neural network design. Most of the existing neural networks treat mean square error function as the standard error function. The system as proposed in this dissertation utilizes the mean quartic error function, where the third and fourth derivatives are non-zero. Consequently, many improvements on the training methods were achieved. The training results are carefully assessed before and after the update. To evaluate the performance of a training system, there are three essential factors to be considered, and they are from high to low importance priority: (1) error rate on testing set, (2) processing time needed to recognize a segmented character and (3) the total training time and subsequently the total testing time. It is observed that bounded training methods accelerate the training process, while semi-third order training methods, next-minimal training methods, and preprocessing operations reduce the error rate on the testing set. Empirical observations suggest that two combinations of training methods are needed for different case character recognition. Since character segmentation is required for word and sentence recognition, this dissertation provides also an effective rule-based segmentation method, which is different from the conventional adaptive segmentation methods. Dictionary-based correction is utilized to correct mistakes resulting from the recognition and segmentation phases. The integration of the segmentation methods with the handwritten character recognition algorithm yielded an accuracy of 92% for lower case characters and 97% for upper case characters. In the testing phase, the database consists of 20,000 handwritten characters, with 10,000 for each case. The testing phase on the recognition 10,000 handwritten characters required 8.5 seconds in processing time.
Resumo:
This phenomenological study explored Black male law enforcement officers' perspectives of how racial profiling shaped their decisions to explore and commit to a law enforcement career. Criterion and snow ball sampling was used to obtain the 17 participants for this study. Super's (1990) archway model was used as the theoretical framework. The archway model "is designed to bring out the segmented but unified and developmental nature of career development, to highlight the segments, and to make their origin clear" (Super, 1990, p. 201). Interview data were analyzed using inductive, deductive, and comparative analyses. Three themes emerged from the inductive analysis of the data: (a) color and/or race does matter, (b) putting on the badge, and (c) too black to be blue and too blue to be black. The deductive analysis used a priori coding that was based on Super's (1990) archway model. The deductive analysis revealed the participants' career exploration was influenced by their knowledge of racial profiling and how others view them. The comparative analysis between the inductive themes and deductive findings found the theme "color and/or race does matter" was present in the relationships between and within all segments of Super's (1990) model. The comparative analysis also revealed an expanded notion of self-concept for Black males – marginalized and/or oppressed individuals. Self-concepts, "such as self-efficacy, self-esteem, and role self-concepts, being combinations of traits ascribed to oneself" (Super, 1990, p. 202) do not completely address the self-concept of marginalized and/or oppressed individuals. The self-concept of marginalized and/or oppressed individuals is self-efficacy, self-esteem, traits ascribed to oneself expanded by their awareness of how others view them. (DuBois, 1995; Freire, 1970; Sheared, 1990; Super, 1990; Young, 1990). Ultimately, self-concept is utilized to make career and life decisions. Current human resource policies and practices do not take into consideration that negative police contact could be the result of racial profiling. Current human resource hiring guidelines penalize individuals who have had negative police contact. Therefore, racial profiling is a discriminatory act that can effectively circumvent U.S. Equal Employment Opportunities Commission laws and serve as a boundary mechanism to employment (Rocco & Gallagher, 2004).
Resumo:
Exchange rate economics has achieved substantial development in the past few decades. Despite extensive research, a large number of unresolved problems remain in the exchange rate debate. This dissertation studied three puzzling issues aiming to improve our understanding of exchange rate behavior. Chapter Two used advanced econometric techniques to model and forecast exchange rate dynamics. Chapter Three and Chapter Four studied issues related to exchange rates using the theory of New Open Economy Macroeconomics. Chapter Two empirically examined the short-run forecastability of nominal exchange rates. It analyzed important empirical regularities in daily exchange rates. Through a series of hypothesis tests, a best-fitting fractionally integrated GARCH model with skewed student-t error distribution was identified. The forecasting performance of the model was compared with that of a random walk model. Results supported the contention that nominal exchange rates seem to be unpredictable over the short run in the sense that the best-fitting model cannot beat the random walk model in forecasting exchange rate movements. Chapter Three assessed the ability of dynamic general-equilibrium sticky-price monetary models to generate volatile foreign exchange risk premia. It developed a tractable two-country model where agents face a cash-in-advance constraint and set prices to the local market; the exogenous money supply process exhibits time-varying volatility. The model yielded approximate closed form solutions for risk premia and real exchange rates. Numerical results provided quantitative evidence that volatile risk premia can endogenously arise in a new open economy macroeconomic model. Thus, the model had potential to rationalize the Uncovered Interest Parity Puzzle. Chapter Four sought to resolve the consumption-real exchange rate anomaly, which refers to the inability of most international macro models to generate negative cross-correlations between real exchange rates and relative consumption across two countries as observed in the data. While maintaining the assumption of complete asset markets, this chapter introduced endogenously segmented asset markets into a dynamic sticky-price monetary model. Simulation results showed that such a model could replicate the stylized fact that real exchange rates tend to move in an opposite direction with respect to relative consumption.
Resumo:
Moving objects database systems are the most challenging sub-category among Spatio-Temporal database systems. A database system that updates in real-time the location information of GPS-equipped moving vehicles has to meet even stricter requirements. Currently existing data storage models and indexing mechanisms work well only when the number of moving objects in the system is relatively small. This dissertation research aimed at the real-time tracking and history retrieval of massive numbers of vehicles moving on road networks. A total solution has been provided for the real-time update of the vehicles’ location and motion information, range queries on current and history data, and prediction of vehicles’ movement in the near future. To achieve these goals, a new approach called Segmented Time Associated to Partitioned Space (STAPS) was first proposed in this dissertation for building and manipulating the indexing structures for moving objects databases. Applying the STAPS approach, an indexing structure of associating a time interval tree to each road segment was developed for real-time database systems of vehicles moving on road networks. The indexing structure uses affordable storage to support real-time data updates and efficient query processing. The data update and query processing performance it provides is consistent without restrictions such as a time window or assuming linear moving trajectories. An application system design based on distributed system architecture with centralized organization was developed to maximally support the proposed data and indexing structures. The suggested system architecture is highly scalable and flexible. Finally, based on a real-world application model of vehicles moving in region-wide, main issues on the implementation of such a system were addressed.
Resumo:
Diazotrophic (N2-fixing) cyanobacteria provide the biological source of new nitrogen for large parts of the ocean. However, little is known about their sensitivity to global change. Here we show that the single most important nitrogen fixer in today's ocean, Trichodesmium, is strongly affected by changes in CO2 concentrations. Cell division rate doubled with rising CO2 (glacial to projected year 2100 levels) prompting lower carbon, nitrogen and phosphorus cellular contents, and reduced cell dimensions. N2 fixation rates per unit of phosphorus utilization as well as C:P and N:P ratios more than doubled at high CO2, with no change in C:N ratios. This could enhance the productivity of N-limited oligotrophic oceans, drive some of these areas into P limitation, and increase biological carbon sequestration in the ocean. The observed CO2 sensitivity of Trichodesmium could thereby provide a strong negative feedback to atmospheric CO2 increase.