866 resultados para Samworth Wildlife Management Area--Maps
Resumo:
European agricultural and environmental policy has evolved considerably over the last 15 years. In this paper the changes in farm businesses in an Environmentally Sensitive Area in England are evaluated based on two surveys with the same farmers at the start and end of this period. The rate of participation in the environmental scheme had increased significantly at a time when Government led goals in this area had developed and become more output focussed. A combination of policy, market and animal health status changes had encouraged a number to leave cattle production, and though remaining with stock and grass they had decided against any extensive development in the direction of pluriactivity – with or without Government encouragement. This left the future of this group in some uncertainty given that two significant forms of financial support, the environmental scheme and the Hill Farm Allowance, were due to close.
Resumo:
1. Declines in area and quality of species-rich mesotrophic and calcareous grasslands have occurred all across Europe.While the European Union has promoted schemes to restore these grasslands, the emphasis for management has remained largely focused on plants. Here we focus on restoration of the phytophagous beetles of these grasslands. Although local management, particularly that which promotes the establishment of host plants, is key to restoration success, dispersal limitation is also likely to be an important limiting factor during the restoration of phytophagous beetle assemblages. 2. Using a 3-year multi-site experiment, we investigated how restoration success of phytophagous beetles was affected by hay-spreading management (intended to introduce target plant species), success in restoration of the plant communities and the landscape context within which restoration was attempted. 3. Restoration success of the plants was greatest where green hay spreading had been used to introduce seeds into restoration sites. Beetle restoration success increased over time, although hayspreading had no direct effect. However, restoration success of the beetles was positively correlated with restoration success of the plants. 4. Overall restoration success of the phytophagous beetles was positively correlated with the proportion of species-rich grassland in the landscape, as was the restoration success of the polyphagous beetles. Restoration success for beetles capable of flight and those showing oligophagous host plant specialism were also positively correlated with connectivity to species-rich grasslands. There was no indication that beetles not capable of flight showed greater dependence on landscape scale factors than flying species. 5. Synthesis and applications. Increasing the similarity of the plant community at restoration sites to target species-rich grasslands will promote restoration success for the phytophagous beetles. However, landscape context is also important, with restoration being approximately twice as successful in those landscapes containing high as opposed to low proportions of species-rich grassland. By targeting grassland restoration within landscapes containing high proportions of species-rich grassland, dispersal limitation problems associated with restoration for invertebrate assemblages are more likely to be overcome.
Resumo:
Purpose – Facilities managers have less visibility of how buildings are being used due to flexible working and unpredictable workers. The purpose of this paper is to examine the current issues in workspace management and an automatic solution through radio frequency identification (RFID) that could provide real time information on the volume and capacity of buildings. Design/methodology/approach – The study described in this paper is based on a case study at a facilities management (FM) department. The department is examining a ubiquitous technology in the form of innovative RFID for security and workspace management. Interviews and observations are conducted within the facilities department for the initial phase of the implementation of RFID technology. Findings – Research suggests that work methods are evolving and becoming more flexible. With this in mind, facilities managers face new challenges to create a suitable environment for an unpredictable workforce. RFID is one solution that could provide facilities managers with an automatic way of examining space in real time and over a wider area than currently possible. RFID alone for space management is financially expensive but by making the application multiple for other areas makes more business sense. Practical implications – This paper will provide practicing FM and academics with the knowledge gained from the application of RFID in this organisation. While the concept of flexible working seems attractive, there is an emerging need to provide various forms of spaces that enable employees’ satisfaction and enhance the productivity of the organisation. Originality/value – The paper introduces new thinking on the subject of “workspace management”. It highlights the current difficulties in workspace management and how an RFID solution will benefit workspace methods.
Resumo:
Season-long monitoring of on-farm rice (Oryza sativa, L.) plots in Nepal explored farmers' decision-making process on the deployment of varieties to agroecosystems, application of production inputs to varieties, agronomic practices and relationship between economic return and area planted per variety. Farmers deploy varieties [landraces (LRs) and modern varieties (MVs)] to agroecosystems based on their understanding of characteristics of varieties and agroecosystems, and the interaction between them. In marginal growing conditions, LRs can compete with MVs. Within an agroecosystem, economic return and area planted to varieties have positive relationship, but this is not so between agroecosystems. LRs are very diverse on agronomic and economic traits; therefore, they cannot be rejected a priori as inferior materials without proper evaluation. LRs have to be evaluated for useful traits and utilized in breeding programmes to generate farmer-preferred materials for marginal environments and for their conservation on-farm.
Resumo:
The paper highlights the methodological development of identifying and characterizing rice (Oryza sativa L.) ecosystems and the varietal deployment process through participatory approaches. Farmers have intricate knowledge of their rice ecosystems. Evidence from Begnas (mid-hill) and Kachorwa (plain) sites in Nepal suggests that farmers distinguish ecosystems for rice primarily on the basis of moisture and fertility of soils. Farmers also differentiate the number, relative size and specific characteristics of each ecosystem within a given geographic area. They allocate individual varieties to each ecosystem, based on the principle of ‘best fit’ between ecosystem characteristics and varietal traits, indicating that competition between varieties mainly occurs within the ecosystems. Land use and ecosystems determine rice genetic diversity, with marginal land having fewer options for varieties than more productive areas. Modern varieties are mostly confined to productive land, whereas landraces are adapted to marginal ecosystems. Researchers need to understand the ecosystems and varietal distribution within ecosystems better in order to plan and execute programmes on agrobiodiversity conservation on-farm, diversity deployment, repatriation of landraces and monitoring varietal diversity. Simple and practical ways to elicit information on rice ecosystems and associated varieties through farmers’ group discussion at village level are suggested.
Resumo:
Service Charge Management is an area of concern to property managers acting for both property occupiers and investors. This paper reviews the background to service charge management in the UK, and examines, by means of a survey, the current state of service charge practice in the surveying profession.
Resumo:
The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.
Resumo:
The contribution non-point P sources make to the total P loading on water bodies in agricultural catchments has not been fully appreciated. Using data derived from plot scale experimental studies, and modelling approaches developed to simulate system behaviour under differing management scenarios, a fuller understanding of the processes controlling P export and transformations along non-point transport pathways can be achieved. One modelling approach which has been successfully applied to large UK catchments (50-350km2 in area) is applied here to a small, 1.5 km2 experimental catchment. The importance of scaling is discussed in the context of how such approaches can extrapolate the results from plot-scale experimental studies to full catchment scale. However, the scope of such models is limited, since they do not at present directly simulate the processes controlling P transport and transformation dynamics. As such, they can only simulate total P export on an annual basis, and are not capable of prediction over shorter time scales. The need for development of process-based models to help answer these questions, and for more comprehensive UK experimental studies is highlighted as a pre-requisite for the development of suitable and sustainable management strategies to reduce non-point P loading on water bodies in agricultural catchments.
Resumo:
Global flood hazard maps can be used in the assessment of flood risk in a number of different applications, including (re)insurance and large scale flood preparedness. Such global hazard maps can be generated using large scale physically based models of rainfall-runoff and river routing, when used in conjunction with a number of post-processing methods. In this study, the European Centre for Medium Range Weather Forecasts (ECMWF) land surface model is coupled to ERA-Interim reanalysis meteorological forcing data, and resultant runoff is passed to a river routing algorithm which simulates floodplains and flood flow across the global land area. The global hazard map is based on a 30 yr (1979–2010) simulation period. A Gumbel distribution is fitted to the annual maxima flows to derive a number of flood return periods. The return periods are calculated initially for a 25×25 km grid, which is then reprojected onto a 1×1 km grid to derive maps of higher resolution and estimate flooded fractional area for the individual 25×25 km cells. Several global and regional maps of flood return periods ranging from 2 to 500 yr are presented. The results compare reasonably to a benchmark data set of global flood hazard. The developed methodology can be applied to other datasets on a global or regional scale.
Resumo:
The UK Department for Environment, Food and Rural Affairs (Defra) identified practices to reduce the risk of animal disease outbreaks. We report on the response of sheep and pig farmers in England to promotion of these practices. A conceptual framework was established from research on factors influencing adoption of animal health practices, linking knowledge, attitudes, social influences and perceived constraints to the implementation of specific practices. Qualitative data were collected from nine sheep and six pig enterprises in 2011. Thematic analysis explored attitudes and responses to the proposed practices, and factors influencing the likelihood of implementation. Most feel they are doing all they can reasonably do to minimise disease risk and that practices not being implemented are either not relevant or ineffective. There is little awareness and concern about risk from unseen threats. Pig farmers place more emphasis than sheep farmers on controlling wildlife, staff and visitor management and staff training. The main factors that influence livestock farmers’ decision on whether or not to implement a specific disease risk measure are: attitudes to, and perceptions of, disease risk; attitudes towards the specific measure and its efficacy; characteristics of the enterprise which they perceive as making a measure impractical; previous experience of a disease or of the measure; and the credibility of information and advice. Great importance is placed on access to authoritative information with most seeing vets as the prime source to interpret generic advice from national bodies in the local context. Uptake of disease risk measures could be increased by: improved risk communication through the farming press and vets to encourage farmers to recognise hidden threats; dissemination of credible early warning information to sharpen farmers’ assessment of risk; and targeted information through training events, farming press, vets and other advisers, and farmer groups, tailored to the different categories of livestock farmer.
Resumo:
This conference was an unusual and interesting event. Celebrating 25 years of Construction Management and Economics provides us with an opportunity to reflect on the research that has been reported over the years, to consider where we are now, and to think about the future of academic research in this area. Hence the sub-title of this conference: “past, present and future”. Looking through these papers, some things are clear. First, the range of topics considered interesting has expanded hugely since the journal was first published. Second, the research methods are also more diverse. Third, the involvement of wider groups of stakeholder is evident. There is a danger that this might lead to dilution of the field. But my instinct has always been to argue against the notion that Construction Management and Economics represents a discipline, as such. Granted, there are plenty of university departments around the world that would justify the idea of a discipline. But the vast majority of academic departments who contribute to the life of this journal carry different names to this. Indeed, the range and breadth of methodological approaches to the research reported in Construction Management and Economics indicates that there are several different academic disciplines being brought to bear on the construction sector. Some papers are based on economics, some on psychology and others on operational research, sociology, law, statistics, information technology, and so on. This is why I maintain that construction management is not an academic discipline, but a field of study to which a range of academic disciplines are applied. This may be why it is so interesting to be involved in this journal. The problems to which the papers are applied develop and grow. But the broad topics of the earliest papers in the journal are still relevant today. What has changed a lot is our interpretation of the problems that confront the construction sector all over the world, and the methodological approaches to resolving them. There is a constant difficulty in dealing with topics as inherently practical as these. While the demands of the academic world are driven by the need for the rigorous application of sound methods, the demands of the practical world are quite different. It can be difficult to meet the needs of both sets of stakeholders at the same time. However, increasing numbers of postgraduate courses in our area result in larger numbers of practitioners with a deeper appreciation of what research is all about, and how to interpret and apply the lessons from research. It also seems that there are contributions coming not just from construction-related university departments, but also from departments with identifiable methodological traditions of their own. I like to think that our authors can publish in journals beyond the construction-related areas, to disseminate their theoretical insights into other disciplines, and to contribute to the strength of this journal by citing our articles in more mono-disciplinary journals. This would contribute to the future of the journal in a very strong and developmental way. The greatest danger we face is in excessive self-citation, i.e. referring only to sources within the CM&E literature or, worse, referring only to other articles in the same journal. The only way to ensure a strong and influential position for journals and university departments like ours is to be sure that our work is informing other academic disciplines. This is what I would see as the future, our logical next step. If, as a community of researchers, we are not producing papers that challenge and inform the fundamentals of research methods and analytical processes, then no matter how practically relevant our output is to the industry, it will remain derivative and secondary, based on the methodological insights of others. The balancing act between methodological rigour and practical relevance is a difficult one, but not, of course, a balance that has to be struck in every single paper.
Resumo:
Requirements for research, practices and policies affecting soil management in relation to global food security are reviewed. Managing soil organic carbon (C) is central because soil organic matter influences numerous soil properties relevant to ecosystem functioning and crop growth. Even small changes in total C content can have disproportionately large impacts on key soil physical properties. Practices to encourage maintenance of soil C are important for ensuring sustainability of all soil functions. Soil is a major store of C within the biosphere – increases or decreases in this large stock can either mitigate or worsen climate change. Deforestation, conversion of grasslands to arable cropping and drainage of wetlands all cause emission of C; policies and international action to minimise these changes are urgently required. Sequestration of C in soil can contribute to climate change mitigation but the real impact of different options is often misunderstood. Some changes in management that are beneficial for soil C, increase emissions of nitrous oxide (a powerful greenhouse gas) thus cancelling the benefit. Research on soil physical processes and their interactions with roots can lead to improved and novel practices to improve crop access to water and nutrients. Increased understanding of root function has implications for selection and breeding of crops to maximise capture of water and nutrients. Roots are also a means of delivering natural plant-produced chemicals into soil with potentially beneficial impacts. These include biocontrol of soil-borne pests and diseases and inhibition of the nitrification process in soil (conversion of ammonium to nitrate) with possible benefits for improved nitrogen use efficiency and decreased nitrous oxide emission. The application of molecular methods to studies of soil organisms, and their interactions with roots, is providing new understanding of soil ecology and the basis for novel practical applications. Policy makers and those concerned with development of management approaches need to keep a watching brief on emerging possibilities from this fast-moving area of science. Nutrient management is a key challenge for global food production: there is an urgent need to increase nutrient availability to crops grown by smallholder farmers in developing countries. Many changes in practices including inter-cropping, inclusion of nitrogen-fixing crops, agroforestry and improved recycling have been clearly demonstrated to be beneficial: facilitating policies and practical strategies are needed to make these widely available, taking account of local economic and social conditions. In the longer term fertilizers will be essential for food security: policies and actions are needed to make these available and affordable to small farmers. In developed regions, and those developing rapidly such as China, strategies and policies to manage more precisely the necessarily large flows of nutrients in ways that minimise environmental damage are essential. A specific issue is to minimise emissions of nitrous oxide whilst ensuring sufficient nitrogen is available for adequate food production. Application of known strategies (through either regulation or education), technological developments, and continued research to improve understanding of basic processes will all play a part. Decreasing soil erosion is essential, both to maintain the soil resource and to minimise downstream damage such as sedimentation of rivers with adverse impacts on fisheries. Practical strategies are well known but often have financial implications for farmers. Examples of systems for paying one group of land users for ecosystem services affecting others exist in several parts of the world and serve as a model.
Resumo:
Soluble reactive phosphorus (SRP) plays a key role in eutrophication, a global problem decreasing habitat quality and in-stream biodiversity. Mitigation strategies are required to prevent SRP fluxes from exceeding critical levels, and must be robust in the face of potential changes in climate, land use and a myriad of other influences. To establish the longevity of these strategies it is therefore crucial to consider the sensitivity of catchments to multiple future stressors. This study evaluates how the water quality and hydrology of a major river system in the UK (the River Thames) respond to alterations in climate, land use and water resource allocations, and investigates how these changes impact the relative performance of management strategies over an 80-year period. In the River Thames, the relative contributions of SRP from diffuse and point sources vary seasonally. Diffuse sources of SRP from agriculture dominate during periods of high runoff, and point sources during low flow periods. SRP concentrations rose under any future scenario which either increased a) surface runoff or b) the area of cultivated land. Under these conditions, SRP was sourced from agriculture, and the most effective single mitigation measures were those which addressed diffuse SRP sources. Conversely, where future scenarios reduced flow e.g. during winters of reservoir construction, the significance of point source inputs increased, and mitigation measures addressing these issues became more effective. In catchments with multiple point and diffuse sources of SRP, an all-encompassing effective mitigation approach is difficult to achieve with a single strategy. In order to attain maximum efficiency, multiple strategies might therefore be employed at different times and locations, to target the variable nature of dominant SRP sources and pathways.
Resumo:
Flooding is a particular hazard in urban areas worldwide due to the increased risks to life and property in these regions. Synthetic Aperture Radar (SAR) sensors are often used to image flooding because of their all-weather day-night capability, and now possess sufficient resolution to image urban flooding. The flood extents extracted from the images may be used for flood relief management and improved urban flood inundation modelling. A difficulty with using SAR for urban flood detection is that, due to its side-looking nature, substantial areas of urban ground surface may not be visible to the SAR due to radar layover and shadow caused by buildings and taller vegetation. This paper investigates whether urban flooding can be detected in layover regions (where flooding may not normally be apparent) using double scattering between the (possibly flooded) ground surface and the walls of adjacent buildings. The method estimates double scattering strengths using a SAR image in conjunction with a high resolution LiDAR (Light Detection and Ranging) height map of the urban area. A SAR simulator is applied to the LiDAR data to generate maps of layover and shadow, and estimate the positions of double scattering curves in the SAR image. Observations of double scattering strengths were compared to the predictions from an electromagnetic scattering model, for both the case of a single image containing flooding, and a change detection case in which the flooded image was compared to an un-flooded image of the same area acquired with the same radar parameters. The method proved successful in detecting double scattering due to flooding in the single-image case, for which flooded double scattering curves were detected with 100% classification accuracy (albeit using a small sample set) and un-flooded curves with 91% classification accuracy. The same measures of success were achieved using change detection between flooded and un-flooded images. Depending on the particular flooding situation, the method could lead to improved detection of flooding in urban areas.