916 resultados para SUBSTITUTED DIOXETANE
Resumo:
A general route for the synthesis of highly substituted aryl cyclopentanes has been developed involving Diels-Alder reaction of asymmetric dienes prepared from (+)-camphoric acid followed by aromatization of the resulting cyclohexene derivatives. Employing this protocol enantiospecific synthesis of (+)-herbertene and (+)-cuparene has been accomplished. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The previously synthesised Schiff-base ligands 2-(2-Ph2PC6H4N = CH) - R' - C6H3OH (R' = 3-OCH3, HL1; 5-OCH3, HL2; 5-Br, HL3; 5-Cl, HL4) were prepared by a faster, more efficient route involving a microwave assisted co-condensation of 2-(diphenylphosphino) aniline with the appropriate substituted salicylaldehyde. HL1-4 react directly with (MCl2)-Cl-II (M = Pd, Pt) or (PtI2)-I-II(cod) affording neutral square-planar complexes of general formula [(MCl)-Cl-II(eta(3)-L1-4)] (M = Pd, Pt, 1 - 8) and [(PtI)-I-II(eta(3)-L1-4)] (M = Pd, Pt, 9 - 12). Reaction of complexes 1 - 4 with the triarylphosphines PR3 (R = Ph, p-tolyl) gave the novel ionic complexes [Pd-II(PR3)(eta(3)- L1-4)] ClO4 (13 - 20). Substituted platinum complexes of the type [Pt-II(PR3)(eta(3)- L1-4)] ClO4 (R = P(CH2CH2CN)(3) 21 - 24) and [Pt-II( P(p-tolyl)(3))(eta(3)-L-3,L-4)] ClO4 ( 25 and 26) were synthesised from the appropriate [(PtCl)-Cl-II(eta(3)-L1-4)] complex (5 - 8) and PR3. The complexes are characterised by microanalytical and spectroscopic techniques. The crystal structures of 3, 6, 10, 15, 20 and 26 were determined and revealed the metal to be in a square-planar four-coordinate environment containing a planar tridentate ligand with an O, N, P donor set together with one further atom which is trans to the central nitrogen atom.
Resumo:
Currently microporous oxidic materials including zeolites are attracting interest as potential hydrogen storage materials. Understanding how molecular hydrogen interacts with these materials is important in the rational development of hydrogen storage materials and is also challenging theoretically. In this paper, we present an incoherent inelastic neutron scattering (INS) study of the adsorption of molecular hydrogen and hydrogen deuteride (HD) in a copper substituted ZSM5 zeolite varying the hydrogen dosage and temperature. We have demonstrated how inelastic neutron scattering can help us understand the interaction of H-2 molecules with a binding site in a particular microporous material, Cu ZSM5, and by implication of other similar materials. The H-2 molecule is bound as a single species lying parallel with the surface. As H-2 dosing increases, lateral interactions between the adsorbed H-2 molecules become apparent. With rising temperature of measurement up to 70 K (the limit of our experiments), H-2 molecules remain bound to the surface equivalent to a liquid or solid H-2 phase. The implication is that hydrogen is bound rather strongly in Cu ZSM5. Using the simple model for the anisotropic interaction to calculate the energy levels splitting, we found that the measured rotational constant of the hydrogen molecule is reduced as a consequence of adsorption by the Cu ZSM5. From the decrease in total signal intensity with increasing temperature, we were able to observe the conversion of para-hydrogen into ortho-hydrogen at paramagnetic centres and so determine the fraction of paramagnetic sites occupied by hydrogen molecules, ca. 60%. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Sigmatropic rearrangement of tetrahydropyridine-derived ammonium is a valuable method for the preparation of substituted prolines. These reaction normally require elevated temperatures to proceed, but bicyclic tetrahydropyridine-like ylid I undergoes rearrangement at -15 degrees C; the extra rigidity of the azabicyclo[3.3.0]octene system preorganizes the transition state and lowers the activation energy for rearrangement.
Resumo:
The aza-Darzens ('ADZ') reactions of N-diphenylphosphinyl ('N-Dpp') imines with chiral enolates derived from N-bromoacetyl 2S-2,10-camphorsultam proceed in generally good yield to give N-diphenylphosphinyl aziridinoyl sultams. However, the stereoselectivity of the reaction is dependent upon the structure of the imine substituent: when the chiral enolate was reacted with arylimines substituted in the ortho-position, mixtures of cis- and trans-2'R,3'R-aziridines were obtained, often with a complete selectivity in favour of the trans-isomer. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We have used high energy transfer (HET) inelastic neutron scattering spectroscopy to measure the vibrational modes in the spectra of hydroxyapatite, bone and brushite to confirm our earlier work that only a fraction of the hydroxyl groups in bone mineral are substituted. The HET spectra are better observed due to the higher scattering cross section of hydrogen compared with the other elements in the calcium phosphate compounds. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The effects of isoelectronic replacement of a neutral nitrogen donor atom by an anionic carbon atom in terpyridine ruthenium(II) complexes on the electronic and photophysical properties of the resulting N,C,N'- and C,N,N'-cyclometalated aryl ruthenium(II) complexes were investigated. To this end, a series of complexes was prepared either with ligands containing exclusively nitrogen donor atoms, that is, [Ru(R-1-tpy)(R-2-tpy)](2+) (R-1, R-2 = H, CO2Et), or bearing either one N,C,N'- or C,N,N'-cyclometalated ligand and one tpy ligand, that is, [Ru(R-1-(NCN)-C-Lambda-N-Lambda)(R-2-tpy)](+) and [Ru(R-1-(CNN)-N-Lambda-N-Lambda)(R-2-tpy)](+), respectively. Single-crystal X-ray structure determinations showed that cyclometalation does not significantly alter the overall geometry of the complexes but does change the bond lengths around the ruthenium(II) center, especially the nitrogen-to-ruthenium bond length trans to the carbanion. Substitution of either of the ligands with electron-withdrawing ester functionalities fine-tuned the electronic properties and resulted in the presence of an IR probe. Using trends obtained from redox potentials, emission energies, IR spectroelectrochemical responses, and the character of the lowest unoccupied molecular orbitals from DFT studies, it is shown that the first reduction process and luminescence are associated with the ester-substituted C,N,N'-cyclometalated ligand in [Ru(EtO2C-(CNN)-N-Lambda-N-Lambda)(tpy)](+). Cyclometalation in an N,C,N'-bonding motif changed the energetic order of the ruthenium d(zx), d(yz), and d(xy) orbitals. The red-shifted absorption in the N,C,N'-cyclometalated complexes is assigned to MLCT transitions to the tpy ligand. The red shift observed upon introduction of the ester moiety is associated with an increase in intensity of low-energy transitions, rather than a red shift of the main transition. Cyclometalation in the C,N,N'-binding motif also red-shifts the absorption, but the corresponding transition is associated with both ligand types. Luminescence of the cyclometalated complexes is relatively independent of the mode of cyclometalation, obeying the energy gap law within each individual series.
Resumo:
A novel series of polyaromatic ionomers with similar equivalent weights but very different sulphonic acid distributions along the ionomer backbone has been designed and prepared. By synthetically organising the sequence-distribution so that it consists of fully defined ionic segments (containing singlets, doublets or quadruplets of sulphonic acid groups) alternating strictly with equally well-defined nonionic spacer segments, a new class of polymers which may be described as microblock ionomers has been developed. These materials exhibit very different properties and morphologies from analogous randomly substituted systems. Progressively extending the nonionic spacer length in the repeat unit (maintaining a constant equivalent weight by increasing the degree of sulphonation. of the ionic segment) leads to an increasing degree of nanophase separation between hydrophilic and hydrophobic domains in these materials. Membranes cast from ionomers with the more highly phase-separated morphologies show significantly higher onset temperatures for uncontrolled swelling in water. This new type of ionomer design has enabled the fabrication of swelling-resistant hydrocarbon membranes, suitable for fuel cell operation, with very much higher ion exchange capacities (>2 meq g(-1)) than those previously reported in the literature. When tested in a fuel cell at high temperature (120 degrees C) and low relative humidity (35% RH), the best microblock membrane matched the performance of Nafion 112. Moreover, comparative low load cycle testing of membrane -electrode assemblies suggests that the durability of the new membranes under conditions of high temperature and low relative humidity is superior to that of conventional perfluorinated materials.
Resumo:
Aromatic poly(ether-ketone)s having pendant carboxyl groups have been obtained by direct, one-pot, Friedel-Crafts copolycondensation of 4,4'-diphenoxybenzophenone with a mixture of terephthaloyl chloride (TC) and trimellitic anhydride acid chloride (TAAC), over a wide range of TAAC/TC molar ratios, in the presence of anhydrous aluminum chloride. The syntheses were performed as precipitation-polycondensations, and the polymers were obtained in particulate form. Besides globular particles of polymer, small quantities of elongated, needlelike particles were observed when the mole ratio TAAC/TC was less than 1. Use of X-ray microdiffraction with synchrotron radiation has revealed that the needlelike material consists of a cyclic compound containing 10 phenylene units, i.e., the crystals are of a [2 + 2] macrocyclic dimer. The polymers obtained are soluble in strong acids and in mixtures of methanesulfonic acid or trifluoroacetic acid with chlorinated hydrocarbons. The molecular structures of the polymers were confirmed by H-1 and C-13 NMR spectroscopy. Reaction of TAAC with 4,4'-diphenoxybenzophenone produced mainly meta-orientation of the resulting ketone linkages. The size of the polymer particles, their molecular weights, and the melting behavior of the products obtained depend on the TAAC/TC ratio used. Ortho-keto acid residues, formed during reaction of anhydride groups of TAAC with 4,4'-diphenoxybenzophenone, exhibit ring-chain tautomerism. A carboxyl-containing aromatic polyketone derived from p-terphenyl, and thus having with no ether linkages in the main chain, was prepared by analogous chemistry, and functional derivatives of carboxy-substituted polyketones were also obtained and characterized.
Resumo:
Novel, linear, soluble, high-molecular-weight, film-forming polymers and copolymers in which main-chain crown ether units alternate with aliphatic (C-10-C-16) units have been obtained for the first time from aromatic electrophilic substitution reactions of crown ethers by aliphatic dicarboxylic acids followed by reduction of the carbonyl groups. The crown ether unit is dibenzo-18-crown-6, dibenzo-21-crown-7, dibenzo-24-crown-8, or dibenzo-30-crown-10; the aliphatic spacer is derived from a dicarboxylic acid (sebacic, 1,12-dodecanedicarboxylic, hexadecanedioic or 1,4-phenylenediacetic acids). The reactions were performed at 35 degrees C in a mixture of methanesulfonic acid (MSA) with phosphorus pentoxide, 12:1 (w/w), (Eaton's reagent). The carbonyl groups in the polyketones obtained were completely reduced to methylene linkages by treatment at room temperature with triethylsilane in a mixture of trifluoroacetic acid and dichloromethane. Polymers containing in the main chain crown ethers alternating with oxyindole fragments were prepared by one-pot condensation of crown ethers with isatin in a medium of Eaton's reagent. A possible reaction mechanism is suggested. According to IR and NMR analyses, the polyacylation reactions lead to the formation of isomeric (syn/anti-substituted) crown ether units in the main chain. The polymers obtained were soluble in the common organic solvents, and flexible transparent films could be cast from the solutions. DSC and X-ray studies of the polymers with "symmetrical" crown ethers reveal the presence of the endotherms corresponding to the supramolecular assemblies.
Resumo:
Purpose – The purpose of this paper is to show the extent to which clients amend standard form contracts in practice, the locus of the amendments, and how contractors respond to the amendments when putting together a bid. Design/methodology/approach – Four live observational case studies were carried out in two of the top 20 UK construction firms. The whole process used to review the proposed terms and conditions of the contract was shadowed using participant observation, interview and documentary analysis. Findings – All four cases showed strong evidence of amendments relating mostly to payment and contractual aspects: 83 amendments in Case Study 1 (CS1), 80 in CS2, 15 in CS3 and 29 in CS4. This comprised clauses that were modified (37 per cent), substituted (23 per cent), deleted (7 per cent) and new additions (33 per cent). Risks inherent in the amendments were mostly addressed through contractual rather than price mechanisms, to reflect commercial imperatives. “Qualifications” and “clarifications” were included in the tender submissions for post-tender negotiations. Thus, the amendments did not necessarily influence price. There was no evidence of a “standard-form contract“ being used as such, although clients may draw on published “standard-form contracts” to derive the forms of contract actually used in practice. Practical implications – Contractors should pay attention to clauses relating to contractual and financial aspects when reviewing tender documents. Clients should draft equitable payment and contractual terms and conditions to reduce risk of dispute. Indeed, it is prudent for clients not to pass on inestimable risks. Originality/value – A better understanding of the extent and locus of amendments in standard form contracts, and how contractors respond, is provided.
Resumo:
The aim of the present study was to compare the response of a range of atherogenic and thrombogenic risk markers to two dietary levels of saturated fatty acid (SFA) substitution with monounsaturated fatty acids (MUFA) in students living in a university hall of residence. Although the benefits of such diets have been reported for plasma lipoproteins in high-risk groups, more needs to be known about effects of more modest SFA-MUFA substitutions over the long term and in young healthy adults. In a parallel design over 16 weeks, fifty-one healthy young subjects were randomised to one of two diets: (1) a moderate-MUFA diet in which 16 g dietary SFA/100 g total fatty acids were substituted with MUFA (n 25); (2) a high-MUFA diet in which 33 g dietary SFA/100 g total fatty acids were substituted with MUFA (n 26). All subjects followed an 8-week run-in diet (reference diet), with a fatty acid composition close to the UK average values. There were no differences in plasma lipid responses between the two diets over 16 weeks of the study with similar reductions in total cholesterol (P<0.001) and LDL-cholesterol (P<0.01) in both groups; a small but significant reduction in HDL-cholesterol was also observed in both groups (P<0.01). Platelet responses to ADP (P<0.01) and arachidonic acid (P<0.05) differed with time on the two diets; at 16 weeks, platelet aggregatory response to ADP was significantly lower on the high-MUFA than the moderate-MUFA (P<0.01) diet; ADP responses were also significantly lower within this group at 8 (P< 0.05) and 16 (P< 0.01) weeks compared with baseline. There were no differences in fasting factor VII activity (factors VIII and VIIag), fibrinogen concentration or tissue-type plasminogen activator activity between the diets. There were no differences in postprandial factor VIII responses to a standard meal (area under the curve) between the diets after 16 weeks, but postprandial factor VIII response was lower than on the high-MUFA diet compared with baseline (P<0.01). In conclusion, a high-MUFA diet sustains potentially beneficial effects on platelet aggregation and postprandial activation of factor VII. Moderate or high substitution of MUFA for SFA achieves similar reductions in fasting blood lipids in young healthy subjects.
Resumo:
The effect of different sugars and glyoxal on the formation of acrylamide in low-moisture starch-based model systems was studied, and kinetic data were obtained. Glucose was more effective than fructose, tagatose, or maltose in acrylamide formation, whereas the importance of glyoxal as a key sugar fragmentation intermediate was confirmed. Glyoxal formation was greater in model systems containing asparagine and glucose rather than fructose. A solid phase microextraction GC-MS method was employed to determine quantitatively the formation of pyrazines in model reaction systems. Substituted pyrazine formation was more evident in model systems containing fructose; however, the unsubstituted homologue, which was the only pyrazine identified in the headspace of glyoxal-asparagine systems, was formed at higher yields when aldoses were used as the reducing sugar. Highly significant correlations were obtained for the relationship between pyrazine and acrylamide formation. The importance of the tautomerization of the asparagine-carbonyl decarboxylated Schiff base in the relative yields of pyrazines and acrylamide is discussed.
Resumo:
The effect of increased dietary intakes of alpha-linolenic acid (ALNA) or eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for 2 months upon plasma lipid composition and capacity for conversion of ALNA to longer-chain metabolites was investigated in healthy men (52 (SD 12) years). After a 4-week baseline period when the subjects substituted a control spread, a test meal containing [U-C-13]ALNA (700 mg) was consumed to measure conversion to EPA, docosapentaenoic acid (DPA) and DHA over 48 h. Subjects were then randomised to one of three groups for 8 weeks before repeating the tracer study: (1) continued on same intake (control, n 5); (2) increased ALNA intake (10 g/d, n 4); (3) increased EPA+DHA intake (1.5 g/d, n 5). At baseline, apparent fractional conversion of labelled ALNA was: EPA 2.80, DPA 1.20 and DRA 0.04%. After 8 weeks on the control diet, plasma lipid composition and [C-13]ALNA conversion remained unchanged compared with baseline. The high-ALNA diet resulted in raised plasma triacylglycerol-EPA and -DPA concentrations and phosphatidylcholine-EPA concentration, whilst [C-13]ALNA conversion was similar to baseline. The high-(EPA+DHA) diet raised plasma phosphatidylcholine-EPA and -DHA concentrations, decreased [C-13]ALNA conversion to EPA (2-fold) and DPA (4-fold), whilst [C-13]ALNA conversion to DHA was unchanged. The dietary interventions did not alter partitioning of ALNA towards beta-oxidation. The present results indicate ALNA conversion was down-regulated by increased product (EPA+DHA) availability, but was not up-regulated by increased substrate (ALNA) consumption. This suggests regulation of ALNA conversion may limit the influence of variations in dietary n-3 fatty acid intake on plasma lipid compositions.
Resumo:
Advanced prostate cancer is not curable by current treatment strategies indicating a significant need for new chemotherapeutic options. Highly substituted ansatitanocene compounds have shown promising cytotoxic activity in a range of cancers. The objectives of this study are to examine the effects of these titanocene compounds on prostate cancer cells. Prostate cell lines were treated with three novel titanocene compounds and compared to titanocene dichloride and cisplatin. Percent apoptosis, viability and cell cycle were assessed using propidium iodide DNA incorporation with flow cytometry. Cytochrome C was assessed by western blotting of mitochondrial and cytoplasmic fractions. Apoptosis Inducing Factor was assessed by confocal microscopy. These novel compounds induced more apoptosis compared to cisplatin in a dose dependent manner. Compound Y had the most significant effect on cell cycle and apoptosis. Despite the release of cytochrome C from the mitochondrial fraction there was no inhibition of apoptosis with the pan caspase inhibitor, ZVAD-FMK. AIF was shown to translocate from the cytosol to the nucleus mediating a caspase independent cell death. Bcl-2 over expressing PC-3 cells, which were resistant to cisplatin induced apoptosis, underwent apoptosis following treatment with all the titanocene compounds. This study demonstrates possible mechanisms by which these novel titanocene compounds can mediate their apoptotic effect in vitro. The fact that they can induce more apoptosis than cisplatin in advanced cancer cell lines would confer an advantage over cisplatin. They represent exciting new agents with future potential for the treatment of advanced prostate cancer.