996 resultados para SPECTRAL SUM-RULES
Resumo:
This paper reports laboratory measurements of the spectrum of highly ionized sulfur. The spectrum of S Ⅸ–S ⅩⅢ has been observed in the wavelength range 170–500 Å. A total of 54 lines have been measured. Forty-two of them have been classified as 2s22pk–2s2pk+1and 2s2pk–2pk+1 transitions. Twelve other lines have been ascribed to 2s–2p,4p–5s,5p–6s,5d–6p, and 6p–8d transitions. These spectral lines have been identified, among which 22 are new and accurately measured. The analysis of the spectra was based on a comparison with other experimental results and calculated values.
Spectral dispersion of cloud droplet size distributions and radar threshold reflectivity for drizzle
Resumo:
Spatial relations, reflecting the complex association between geographical phenomena and environments, are very important in the solution of geographical issues. Different spatial relations can be expressed by indicators which are useful for the analysis of geographical issues. Urbanization, an important geographical issue, is considered in this paper. The spatial relationship indicators concerning urbanization are expressed with a decision table. Thereafter, the spatial relationship indicator rules are extracted based on the application of rough set theory. The extraction process of spatial relationship indicator rules is illustrated with data from the urban and rural areas of Shenzhen and Hong Kong, located in the Pearl River Delta. Land use vector data of 1995 and 2000 are used. The extracted spatial relationship indicator rules of 1995 are used to identify the urban and rural areas in Zhongshan, Zhuhai and Macao. The identification accuracy is approximately 96.3%. Similar procedures are used to extract the spatial relationship indicator rules of 2000 for the urban and rural areas in Zhongshan, Zhuhai and Macao. An identification accuracy of about 83.6% is obtained.
Resumo:
Radiation-use efficiency (RUE, g/MJ) and the harvest index (HI, unitless) are two helpful characteristics in interpreting crop response to environmental and climatic changes. They are also increasingly important for accurate crop yield simulation, but they are affected by various environmental factors. In this study, the RUE and HI of winter wheat and their relationships to canopy spectral reflectance were investigated based on the massive field measurements of five nitrogen (N) treatments. Crop production can be separated into light interception and RUE. The results indicated that during a long period of slow growth from emergence to regreening, the effect of N on crop production mainly showed up in an increased light interception by the canopy. During the period of rapid growth from regreening to maturity, it was present in both light interception and RUE. The temporal variations of RUEAPAR (aboveground biomass produced per unit of photosynthetically active radiation absorbed by the canopy) during the period from regreening to maturity had different patterns corresponding to the N deficiency, N adequacy and N-excess conditions. Moreover, significant relationships were found between the RUEAPAR and the accumulative normalised difference vegetation index (NDVI) in the integrated season (R-2 = 0.68), between the HI and the accumulative NDVI after anthesis (R-2 = 0.89), and between the RUEgrain (ratio of grain yield to the total amount of photosynthetically active radiation absorbed by the canopy) and the accumulative NDVI of the whole season (R-2 = 0.89) and that after anthesis (R-2 = 0.94). It suggested that canopy spectral reflectance has the potential to reveal the spatial information of the RUEAPAR, HI and RUEgrain. It is hoped that this information will be useful in improving the accuracy of crop yield simulation in large areas.
Resumo:
For maximizing the effective applications of remote sensing in crop recognition, crop performance assessment and canopy variables estimation at large areas, it is essential to fully understand the spectral response of canopy to crop development and varying growing conditions. In this paper, the spectral properties of winter wheat canopy under different growth stages and different agronomic conditions were investigated at the field level based on reflectance measurements. It was proved that crop growth and development, nitrogen fertilization rates, nutrient deficit (e.g. lacking any kind of nitrogen, phosphorus and kalium fertilizer or lacking all of them), irrigation frequency and plant density had direct influence on canopy reflectance in 400-900 nm which including the visible/near infrared bands, and resulted in great changes of spectral curves. It was suggested that spectral reflectance of crop canopy can well reflect the growth and development of crop and the impacts from various factors, and was feasible to provide vital information for crop monitoring and assessment. ©2010 IEEE.