941 resultados para Ruthenium(II) complexes
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Resumo:
The invention relates to the synthesis and characterisation of ruthenium(II) phosphine complexes containing picolinate and/or diimine and/or biphosphine ions and having an outstanding pharmacological activity for inhibiting the growth of tuberculosis mycobacteria. These complexes can first be used in the chemical industry, and in the medium and long term, in the pharmaceutical industry. The invention also describes how the activity against tuberculosis bacillus was determined, and how the toxicity of the complexes against macrophage cells within which the tuberculosis bacillus grows was assessed.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The electrochemical behaviour of N-R-4-cyanopyridinium (4-rcp) (R = methyl, decyl, dodecyl, or benzyl) coordinated to pentaammineruthenium(II) in CF3COOH-CF3COONa (μ = 0.1 M, pH 3) aqueous medium was studied by means of cyclic voltammetry and constant potential electrolysis. The electrochemical oxidation of the metallic centre (Ep ca 0.51 V/SCE) can be described as a reversible monoelectronic charge-transfer followed by an irreversible chemical reaction, which is the hydrolysis of N-R-4-cyanopyridiniumpentaammineruthenium(III) (A) to N-R-4-carboxamidepyridiniumruthenium (III) (B) with the kf1 values depending on the type of alkyl group. The E 1 2 values are not significantly influenced by the nature of the alkyl group. At more negative potential (ca -0.5 V/SCE), B undergoes an electrochemical reduction followed by an aquation reaction to produce aquopentaammineruthenium(II) and free N-R-4-carboxamidepyridinium. The amide was identified by comparison of its cyclic voltammogram and UV-vis spectrum with that of a sample prepared by chemical reaction. The results were also discussed by comparison with other systems, and show that nitrile-amide conversion catalysed by pentaammineruthenium(II) complexes is possible. © 1994.