891 resultados para Rotational motion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies on motion perception revealed motion-processing brain areas sensitive to changes in luminance and texture (low-level) and changes in salience (high-level). The present functional magnetic resonance imaging (fMRI) study focused on motion standstill. This phenomenon, occurring at fast presentation frequencies of visual moving objects that are perceived as static, has not been previously explored by neuroimaging techniques. Thirteen subjects were investigated while perceiving apparent motion at 4 Hz, at 30 Hz (motion standstill), isoluminant static and flickering stimuli, fixation cross, and blank screen, presented randomly and balanced for rapid event-related fMRI design. Blood oxygenation level-dependent (BOLD) signal in the occipito-temporal brain region MT/V5 increased during apparent motion perception. Here we could demonstrate that brain areas like the posterior part of the right inferior parietal lobule (IPL) demonstrated higher BOLD-signal during motion standstill. These findings suggest that the activation of higher-order motion areas is elicited by apparent motion at high presentation rates (motion standstill). We interpret this observation as a manifestation of an orienting reaction in IPL towards stimulus motion that might be detected but not resolved by other motion-processing areas (i.e., MT/V5).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motion-induced blindness (MIB) occurs when target stimuli are presented together with a moving distractor pattern. Most observers experience the targets disappearing and reappearing repeatedly for periods of up to several seconds. MIB can be viewed as a striking marker for the organization of cognitive functioning. In the present study, MIB rates and durations were assessed in 34 schizophrenia-spectrum disorder patients and matched controls. The results showed that positive symptoms and excitement enhanced MIB, whereas depression and negative symptoms attenuated the illusion. MIB was more frequently found in normal subjects. The results remained consistent after adjusting for reaction time and error rates. Hence, MIB may provide a valid and reliable measure of cognitive organization in schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To determine the association between the 3-dimensional (3-D) motion pattern of the caudal lumbar and lumbosacral portions of the canine vertebral column and the morphology of vertebrae, facet joints, and intervertebral disks. SAMPLE POPULATION: Vertebral columns of 9 German Shepherd Dogs and 16 dogs of other breeds with similar body weights and body conditions. PROCEDURE: Different morphometric parameters of the vertebral column were assessed by computed tomography (CT) and magnetic resonance imaging. Anatomic conformation and the 3-D motion pattern were compared, and correlation coefficients were calculated. RESULTS: Total range of motion for flexion and extension was mainly associated with the facet joint angle, the facet joint angle difference between levels of the vertebral column in the transverse plane on CT images, disk height, and lever arm length. CONCLUSIONS AND CLINICAL RELEVANCE: Motion is a complex process that is influenced by the entire 3-D conformation of the lumbar portion of the vertebral column. In vivo dynamic measurements of the 3-D motion pattern of the lumbar and lumbosacral portions of the vertebral column will be necessary to further assess biomechanics that could lead to disk degeneration in dogs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This EEG study was performed to clarify the time course of brain electrical events and possible vigilance changes associated with perceptual flips during multistable perception. 13 healthy subjects (28.5 3.8 years) were recorded with a 21-channel digital EEG during a stroboscopic alternative motion paradigm implying illusionary motion with ambiguous direction. Perceptual flips were preceded by a significant decrease of EEG frequencies, and followed by a significant frequency increase with a trend to overshoot. EEG slowing is a reliable sign of vigilance decrease and can be related to thalamic deactivation. This is consistent with a recent fMRI study, which showed thalamic deactivation associated with perceptual flips. The study added important chronological information about this phenomenon and allows the conclusion that reduced vigilance facilitates perceptual discontinuities during multistable perception.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synchronization of dynamic multileaf collimator (DMLC) response with respiratory motion is critical to ensure the accuracy of DMLC-based four dimensional (4D) radiation delivery. In practice, however, a finite time delay (response time) between the acquisition of tumor position and multileaf collimator response necessitates predictive models of respiratory tumor motion to synchronize radiation delivery. Predicting a complex process such as respiratory motion introduces geometric errors, which have been reported in several publications. However, the dosimetric effect of such errors on 4D radiation delivery has not yet been investigated. Thus, our aim in this work was to quantify the dosimetric effects of geometric error due to prediction under several different conditions. Conformal and intensity modulated radiation therapy (IMRT) plans for a lung patient were generated for anterior-posterior/posterior-anterior (AP/PA) beam arrangements at 6 and 18 MV energies to provide planned dose distributions. Respiratory motion data was obtained from 60 diaphragm-motion fluoroscopy recordings from five patients. A linear adaptive filter was employed to predict the tumor position. The geometric error of prediction was defined as the absolute difference between predicted and actual positions at each diaphragm position. Distributions of geometric error of prediction were obtained for all of the respiratory motion data. Planned dose distributions were then convolved with distributions for the geometric error of prediction to obtain convolved dose distributions. The dosimetric effect of such geometric errors was determined as a function of several variables: response time (0-0.6 s), beam energy (6/18 MV), treatment delivery (3D/4D), treatment type (conformal/IMRT), beam direction (AP/PA), and breathing training type (free breathing/audio instruction/visual feedback). Dose difference and distance-to-agreement analysis was employed to quantify results. Based on our data, the dosimetric impact of prediction (a) increased with response time, (b) was larger for 3D radiation therapy as compared with 4D radiation therapy, (c) was relatively insensitive to change in beam energy and beam direction, (d) was greater for IMRT distributions as compared with conformal distributions, (e) was smaller than the dosimetric impact of latency, and (f) was greatest for respiration motion with audio instructions, followed by visual feedback and free breathing. Geometric errors of prediction that occur during 4D radiation delivery introduce dosimetric errors that are dependent on several factors, such as response time, treatment-delivery type, and beam energy. Even for relatively small response times of 0.6 s into the future, dosimetric errors due to prediction could approach delivery errors when respiratory motion is not accounted for at all. To reduce the dosimetric impact, better predictive models and/or shorter response times are required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The range of motion of normal hips and hips with femoroacetabular impingement relative to some specific anatomic reference landmarks is unknown. We therefore described: (1) the range of motion pattern relative to landmarks; (2) the location of the impingement zones in normal and impinging hips; and (3) the influence of surgical débridement on the range of motion. We used a previously developed and validated noninvasive 3-D CT-based method for kinematic hip analysis to compare the range of motion pattern, the location of impingement, and the effect of virtual surgical reconstruction in 28 hips with anterior femoroacetabular impingement and a control group of 33 normal hips. Hips with femoroacetabular impingement had decreased flexion, internal rotation, and abduction. Internal rotation decreased with increasing flexion and adduction. The calculated impingement zones were localized in the anterosuperior quadrant of the acetabulum and were similar in the two groups and in impingement subgroups. The average improvement of internal rotation was 5.4 degrees for pincer hips, 8.5 degrees for cam hips, and 15.7 degrees for mixed impingement. This method helps the surgeon quantify the severity of impingement and choose the appropriate treatment option; it provides a basis for future image-guided surgical reconstruction in femoroacetabular impingement with less invasive techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to assess the performance of a new motion correction algorithm. Twenty-five dynamic MR mammography (MRM) data sets and 25 contrast-enhanced three-dimensional peripheral MR angiographic (MRA) data sets which were affected by patient motion of varying severeness were selected retrospectively from routine examinations. Anonymized data were registered by a new experimental elastic motion correction algorithm. The algorithm works by computing a similarity measure for the two volumes that takes into account expected signal changes due to the presence of a contrast agent while penalizing other signal changes caused by patient motion. A conjugate gradient method is used to find the best possible set of motion parameters that maximizes the similarity measures across the entire volume. Images before and after correction were visually evaluated and scored by experienced radiologists with respect to reduction of motion, improvement of image quality, disappearance of existing lesions or creation of artifactual lesions. It was found that the correction improves image quality (76% for MRM and 96% for MRA) and diagnosability (60% for MRM and 96% for MRA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotational atherectomy has been regaining interest over the last couple of years after it almost has disappeared from most interventional catheterization laboratories for several years due to failure to prove its original concept of improving long term results of percutaneous coronary interventions (PCI) as was repeatedly shown in studies in the 1990s. Its revival coupled the introduction of drug-eluting stents (DES); these devices have led to treating much more complex lesions and high-risk patients by PCI. However, real-world experience suggested that off-label use of DES is associated with a higher rate of early and late stent thrombosis. Therefore, more attention is now being paid to the initial implantation technique of DES including aggressive lesion preparation to facilitate stent delivery and expansion. The limited studies with rot-ablation and DES showed promising results with no long term safety concerns. In these studies, a subtle observation was made suggesting that rot-ablation prior to DES implantation in such lesions may have an add-on effect on long term outcome compared to DES alone. An ongoing multicenter study is investigating such effect among complex calcified coronary lesions. Even if this additive benefit does not prove true, rot-ablation remains an efficient tool for preparing certain lesions to facilitate effective and safe DES implantation. Therefore, interventional training programs should focus on this difficult technique to bridge the gap of experience which resulted from neglecting it for several years. In this regard, dedicated courses at experienced sites as well as medical simulation may be appropriate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Modeling method of teaching has demonstrated well--‐documented success in the improvement of student learning. The teacher/researcher in this study was introduced to Modeling through the use of a technique called White Boarding. Without formal training, the researcher began using the White Boarding technique for a limited number of laboratory experiences with his high school physics classes. The question that arose and was investigated in this study is “What specific aspects of the White Boarding process support student understanding?” For the purposes of this study, the White Boarding process was broken down into three aspects – the Analysis of data through the use of Logger Pro software, the Preparation of White Boards, and the Presentations each group gave about their specific lab data. The lab used in this study, an Acceleration of Gravity Lab, was chosen because of the documented difficulties students experience in the graphing of motion. In the lab, students filmed a given motion, utilized Logger Pro software to analyze the motion, prepared a White Board that described the motion with position--‐time and velocity--‐time graphs, and then presented their findings to the rest of the class. The Presentation included a class discussion with minimal contribution from the teacher. The three different aspects of the White Boarding experience – Analysis, Preparation, and Presentation – were compared through the use of student learning logs, video analysis of the Presentations, and follow--‐up interviews with participants. The information and observations gathered were used to determine the level of understanding of each participant during each phase of the lab. The researcher then looked for improvement in the level of student understanding, the number of “aha” moments students had, and the students’ perceptions about which phase was most important to their learning. The results suggest that while all three phases of the White Boarding experience play a part in the learning process for students, the Presentations provided the most significant changes. The implications for instruction are discussed.