984 resultados para Robot-assisted algorithm
Resumo:
FRAX(®) is a fracture risk assessment algorithm developed by the World Health Organization in cooperation with other medical organizations and societies. Using easily available clinical information and femoral neck bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA), when available, FRAX(®) is used to predict the 10-year probability of hip fracture and major osteoporotic fracture. These values may be included in country specific guidelines to aid clinicians in determining when fracture risk is sufficiently high that the patient is likely to benefit from pharmacological therapy to reduce that risk. Since the introduction of FRAX(®) into clinical practice, many practical clinical questions have arisen regarding its use. To address such questions, the International Society for Clinical Densitometry (ISCD) and International Osteoporosis Foundations (IOF) assigned task forces to review the best available medical evidence and make recommendations for optimal use of FRAX(®) in clinical practice. Questions were identified and divided into three general categories. A task force was assigned to investigating the medical evidence in each category and developing clinically useful recommendations. The BMD Task Force addressed issues that included the potential use of skeletal sites other than the femoral neck, the use of technologies other than DXA, and the deletion or addition of clinical data for FRAX(®) input. The evidence and recommendations were presented to a panel of experts at the ISCD-IOF FRAX(®) Position Development Conference, resulting in the development of ISCD-IOF Official Positions addressing FRAX(®)-related issues.
Resumo:
L'hôpital de jour de psychiatrie de l'âge avancé du centre hospitalier universitaire Vaudois (CHUV), en Suisse, prend en charge ambulatoirement les personnes âgées souffrant de troubles psychiatriques. Cet article relate la première expérience de notre équipe d'une patiente qui est décédée à domicile via l'assistance au suicide alors qu'elle était suivie dans notre service pour un épisode dépressif sévère, de probables troubles cognitifs et un trouble de la personnalité émotionnellement labile de type borderline. Cette pratique d'assistance au suicide, autorisée par la loi suisse sous certaines conditions, est reprécisée et quelques directives médicoéthiques professionnelles sont présentées, avec un accent sur la capacité de discernement. © 2010 Elsevier Masson SAS. Tous droits réservés. The old age psychiatric daycare hospital of the Vaud University Hospital (CHUV), in Switzerland, follows up on elderly ambulatory patients with psychiatric disease. This article relates our team's first time experience with a patient who, while she was being treated in our unit for severe depression, cognitive symptoms and a borderline personality disorder, died at home via a suicide organization. Assisted suicide, allowed by the Swiss law, is also discussed in this article and, in addition, a few professional medico-ethics directives, with an emphasis on decision-making capacity are presented. © 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Intensity-modulated radiotherapy (IMRT) treatment plan verification by comparison with measured data requires having access to the linear accelerator and is time consuming. In this paper, we propose a method for monitor unit (MU) calculation and plan comparison for step and shoot IMRT based on the Monte Carlo code EGSnrc/BEAMnrc. The beamlets of an IMRT treatment plan are individually simulated using Monte Carlo and converted into absorbed dose to water per MU. The dose of the whole treatment can be expressed through a linear matrix equation of the MU and dose per MU of every beamlet. Due to the positivity of the absorbed dose and MU values, this equation is solved for the MU values using a non-negative least-squares fit optimization algorithm (NNLS). The Monte Carlo plan is formed by multiplying the Monte Carlo absorbed dose to water per MU with the Monte Carlo/NNLS MU. Several treatment plan localizations calculated with a commercial treatment planning system (TPS) are compared with the proposed method for validation. The Monte Carlo/NNLS MUs are close to the ones calculated by the TPS and lead to a treatment dose distribution which is clinically equivalent to the one calculated by the TPS. This procedure can be used as an IMRT QA and further development could allow this technique to be used for other radiotherapy techniques like tomotherapy or volumetric modulated arc therapy.
Resumo:
Rheumatoid arthritis is the only secondary cause of osteoporosis that is considered independent of bone density in the FRAX(®) algorithm. Although input for rheumatoid arthritis in FRAX(®) is a dichotomous variable, intuitively, one would expect that more severe or active disease would be associated with a greater risk for fracture. We reviewed the literature to determine if specific disease parameters or medication use could be used to better characterize fracture risk in individuals with rheumatoid arthritis. Although many studies document a correlation between various parameters of disease activity or severity and decreased bone density, fewer have associated these variables with fracture risk. We reviewed these studies in detail and concluded that disability measures such as HAQ (Health Assessment Questionnaire) and functional class do correlate with clinical fractures but not morphometric vertebral fractures. One large study found a strong correlation with duration of disease and fracture risk but additional studies are needed to confirm this. There was little evidence to correlate other measures of disease such as DAS (disease activity score), VAS (visual analogue scale), acute phase reactants, use of non-glucocorticoid medications and increased fracture risk. We concluded that FRAX(®) calculations may underestimate fracture probability in patients with impaired functional status from rheumatoid arthritis but that this could not be quantified at this time. At this time, other disease measures cannot be used for fracture prediction. However only a few, mostly small studies addressed other disease parameters and further research is needed. Additional questions for future research are suggested.
Resumo:
Background: Attention to patients with acute minor-illnesses requesting same-day consultation represents a major burden in primary care. The workload is assumed by general practitioners in many countries. A number of reports suggest that care to these patients may be provided, at in least in part, by nurses. However, there is scarce information with respect to the applicability of a program of nurse management for adult patients with acute minor-illnesses in large areas. The aim of this study is to assess the effectiveness of a program of nurse algorithm-guided care for adult patients with acute minor illnesses requesting same-day consultation in primary care in a largely populated area. Methods: A cross-sectional study of all adult patients seeking same day consultation for 16 common acute minor illnesses in a large geographical area with 284 primary care practices. Patients were included in a program of nurse case management using management algorithms. The main outcome measure was case resolution, defined as completion of the algorithm by the nurse without need of referral of the patient to the general practitioner. The secondary outcome measure was return to consultation, defined as requirement of new consultation for the same reason as the first one, in primary care within a 7-day period. Results: During a two year period (April 2009-April 2011), a total of 1,209,669 consultations were performed in the program. Case resolution was achieved by nurses in 62.5% of consultations. The remaining cases were referred to a general practitioner. Resolution rates ranged from 94.2% in patients with burns to 42% in patients with upper respiratory symptoms. None of the 16 minor illnesses had a resolution rate below 40%. Return to consultation during a 7-day period was low, only 4.6%. Conclusions: A program of algorithms-guided care is effective for nurse case management of patients requesting same day consultation for minor illnesses in primary care.
Resumo:
Background: Attention to patients with acute minor-illnesses requesting same-day consultation represents a major burden in primary care. The workload is assumed by general practitioners in many countries. A number of reports suggest that care to these patients may be provided, at in least in part, by nurses. However, there is scarce information with respect to the applicability of a program of nurse management for adult patients with acute minor-illnesses in large areas. The aim of this study is to assess the effectiveness of a program of nurse algorithm-guided care for adult patients with acute minor illnesses requesting same-day consultation in primary care in a largely populated area. Methods: A cross-sectional study of all adult patients seeking same day consultation for 16 common acute minor illnesses in a large geographical area with 284 primary care practices. Patients were included in a program of nurse case management using management algorithms. The main outcome measure was case resolution, defined as completion of the algorithm by the nurse without need of referral of the patient to the general practitioner. The secondary outcome measure was return to consultation, defined as requirement of new consultation for the same reason as the first one, in primary care within a 7-day period. Results: During a two year period (April 2009-April 2011), a total of 1,209,669 consultations were performed in the program. Case resolution was achieved by nurses in 62.5% of consultations. The remaining cases were referred to a general practitioner. Resolution rates ranged from 94.2% in patients with burns to 42% in patients with upper respiratory symptoms. None of the 16 minor illnesses had a resolution rate below 40%. Return to consultation during a 7-day period was low, only 4.6%. Conclusions: A program of algorithms-guided care is effective for nurse case management of patients requesting same day consultation for minor illnesses in primary care.
Resumo:
Background: Attention to patients with acute minor-illnesses requesting same-day consultation represents a major burden in primary care. The workload is assumed by general practitioners in many countries. A number of reports suggest that care to these patients may be provided, at in least in part, by nurses. However, there is scarce information with respect to the applicability of a program of nurse management for adult patients with acute minor-illnesses in large areas. The aim of this study is to assess the effectiveness of a program of nurse algorithm-guided care for adult patients with acute minor illnesses requesting same-day consultation in primary care in a largely populated area. Methods: A cross-sectional study of all adult patients seeking same day consultation for 16 common acute minor illnesses in a large geographical area with 284 primary care practices. Patients were included in a program of nurse case management using management algorithms. The main outcome measure was case resolution, defined as completion of the algorithm by the nurse without need of referral of the patient to the general practitioner. The secondary outcome measure was return to consultation, defined as requirement of new consultation for the same reason as the first one, in primary care within a 7-day period. Results: During a two year period (April 2009-April 2011), a total of 1,209,669 consultations were performed in the program. Case resolution was achieved by nurses in 62.5% of consultations. The remaining cases were referred to a general practitioner. Resolution rates ranged from 94.2% in patients with burns to 42% in patients with upper respiratory symptoms. None of the 16 minor illnesses had a resolution rate below 40%. Return to consultation during a 7-day period was low, only 4.6%. Conclusions: A program of algorithms-guided care is effective for nurse case management of patients requesting same day consultation for minor illnesses in primary care.
Resumo:
Chronic atrial fibrillation affects millions of people worldwide. Its surgical treatment often fails to restore the transport function of the atrium. This study first introduces the concept of an atrial assist device (AAD) to restore the pump function of the atrium. The AAD is developed to be totally implantable in the human body with a transcutaneous energy transfer system to recharge the implanted battery. The ADD consists of a motorless pump based on artificial muscle technology, positioned on the external surface of the atrium to compress it and restore its muscular activity. A bench model reproduces the function of a fibrillating atrium to assess the circulatory support that this pump can provide. Atripump (Nanopowers SA, Switzerland) is a dome-shaped silicone-coated nitinol actuator 5 mm high, sutured on the external surface of the atrium. A pacemaker-like control unit drives the actuator that compresses the atrium, providing the mechanical support to the blood circulation. Electrical characteristics: the system is composed of one actuator that needs a minimal tension of 15 V and has a maximum current of 1.5 A with a 50% duty cycle. The implantable rechargeable battery is made of a cell having the following specifications: nominal tension of a cell: 4.1 V, tension after 90% of discharge: 3.5 V, nominal capacity of a cell: 163 mA h. The bench model consists of an open circuit made of latex bladder 60 mm in diameter filled with water. The bladder is connected to a vertically positioned tube that is filled to different levels, reproducing changes in cardiac preload. The Atripump is placed on the outer surface of the bladder. Pressure, volume and temperature changes were recorded. The contraction rate was 1 Hz with a power supply of 12 V, 400 mA for 200 ms. Preload ranged from 15 to 21 cm H(2)O. Maximal silicone membrane temperature was 55 degrees C and maximal temperature of the liquid environment was 35 degrees C. The pump produced a maximal work of 16 x 10(-3) J. Maximal volume pumped was 492 ml min(-1). This artificial muscle pump is compact, follows the Starling law and reproduces the hemodynamic performances of a normal atrium. It could represent a new tool to restore the atrial kick in persistent atrial fibrillation.
Resumo:
Background: Computer assisted cognitive remediation (CACR) was demonstrated to be efficient in improving cognitive deficits in adults with psychosis. However, scarce studies explored the outcome of CACR in adolescents with psychosis or at high risk. Aims: To investigate the effectiveness of a computer-assisted cognitive remediation (CACR) program in adolescents with psychosis or at high risk. Method: Intention to treat analyses included 32 adolescents who participated in a blinded 8-week randomized controlled trial of CACR treatment compared to computer games (CG). Cognitive abilities, symptoms and psychosocial functioning were assessed at baseline and posttreatment. Results: Improvement in visuospatial abilities was significantly greater in the CACR group than in CG. Other cognitive functions, psychotic symptoms and psychosocial functioning improved significantly, but at similar rates, in the two groups. Conclusion: CACR can be successfully administered in this population; it proved to be effective over and above CG for the most intensively trained cognitive ability.
Resumo:
This research extends a previously developed work concerning about the use of local model predictive control in mobile robots. Hence, experimental results are presented as a way to improve the methodology by considering aspects as trajectory accuracy and time performance. In this sense, the cost function and the prediction horizon are important aspects to be considered. The platformused is a differential driven robot with a free rotating wheel. The aim of the present work is to test the control method by measuring trajectory tracking accuracy and time performance. Moreover, strategies for the integration with perception system and path planning are also introduced. In this sense, monocular image data provide an occupancy grid where safety trajectories are computed by using goal attraction potential fields
Resumo:
This research work deals with the problem of modeling and design of low level speed controller for the mobile robot PRIM. The main objective is to develop an effective educational, and research tool. On one hand, the interests in using the open mobile platform PRIM consist in integrating several highly related subjects to the automatic control theory in an educational context, by embracing the subjects of communications, signal processing, sensor fusion and hardware design, amongst others. On the other hand, the idea is to implement useful navigation strategies such that the robot can be served as a mobile multimedia information point. It is in this context, when navigation strategies are oriented to goal achievement, that a local model predictive control is attained. Hence, such studies are presented as a very interesting control strategy in order to develop the future capabilities of the system. In this context the research developed includes the visual information as a meaningful source that allows detecting the obstacle position coordinates as well as planning the free obstacle trajectory that should be reached by the robot