974 resultados para Rice cultivation
Resumo:
Abstract Background The use of lignocellulosic constituents in biotechnological processes requires a selective separation of the main fractions (cellulose, hemicellulose and lignin). During diluted acid hydrolysis for hemicellulose extraction, several toxic compounds are formed by the degradation of sugars and lignin, which have ability to inhibit microbial metabolism. Thus, the use of a detoxification step represents an important aspect to be considered for the improvement of fermentation processes from hydrolysates. In this paper, we evaluated the application of Advanced Oxidative Processes (AOPs) for the detoxification of rice straw hemicellulosic hydrolysate with the goal of improving ethanol bioproduction by Pichia stipitis yeast. Aiming to reduce the toxicity of the hemicellulosic hydrolysate, different treatment conditions were analyzed. The treatments were carried out according to a Taguchi L16 orthogonal array to evaluate the influence of Fe+2, H2O2, UV, O3 and pH on the concentration of aromatic compounds and the fermentative process. Results The results showed that the AOPs were able to remove aromatic compounds (furan and phenolic compounds derived from lignin) without affecting the sugar concentration in the hydrolysate. Ozonation in alkaline medium (pH 8) in the presence of H2O2 (treatment A3) or UV radiation (treatment A5) were the most effective for hydrolysate detoxification and had a positive effect on increasing the yeast fermentability of rice straw hemicellulose hydrolysate. Under these conditions, the higher removal of total phenols (above 40%), low molecular weight phenolic compounds (above 95%) and furans (above 52%) were observed. In addition, the ethanol volumetric productivity by P. stipitis was increased in approximately twice in relation the untreated hydrolysate. Conclusion These results demonstrate that AOPs are a promising methods to reduce toxicity and improve the fermentability of lignocellulosic hydrolysates.
Resumo:
Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.
Resumo:
Xylose-to-xylitol bioconversion using 2.5 or 10% (v/v) rice bran extract was performed to verify the influence of this source of nutrients on Candida guilliermondii metabolism. Semisynthetic medium (SM) and sugarcane bagasse hemicellulosic hydrolysate detoxified with ion-exchange resins (HIE) or with alteration in pH combined with adsorption onto activated charcoal (HAC) were fermented in 125 mL Erlenmeyer flasks at 30 ºC and 200 rpm for 72 hours. Activated charcoal supplemented with 2.5% (v/v) rice bran extract was fermented by C. guilliermondii in a MULTIGEN stirred tank reactor using pH 5.0 and 22.9/hour oxygen transfer volumetric coefficient. Higher values of xylitol productivity (0.70, 0.71, and 0.62 g.Lh-1) and xylose-to-xylitol conversion yield (0.71, 0.69, and 0.63 g.g-1) were obtained with 2.5% (v/v) rice bran in semisynthetic medium, ion-exchange resins, and activated charcoal, respectively. Moreover, during batch fermentation, the xylitol volumetric productivity and fermentation efficiency values obtained were 0.53 g.Lh-1 and 61.1%, respectively.
Resumo:
The objective of the present study was to evaluate the efficiency of X-rays in identifying fissures in artificially dried rice seeds and the relationship between damage and seed performance in the germination test. Irrigated rice seeds of the IRGA 417 and IRGA 420 cultivars were harvested with 23.3 and 24.5% water content respectively and submitted to stationary drying treatments at 32, 38, 44 and 50 °C. X-rays were taken of subsamples of 100 seeds for each treatment, using an MX-20 X-ray equipment. The X-rayed seeds were classified from 1 to 3, where 1 corresponded to seeds without fissures, 2 to seeds with non-severe fissures and 3 to seeds with severe fissures. The same X-rayed seeds were planted and on the seventh day the seedlings (normal or abnormal) and dead seeds were photographed and evaluated to verify any relationship between the fissures and physiological potential. Higher drying temperature increased the percentage of fissures in the two cultivars, which can adversely affect their germination. Seeds with fissures can be identified using X-rays.
Resumo:
In this study rice husk ash (RHA) and broiler bed ash from rice husk (BBA), two agricultural waste materials, have been assessed for use as partial cement replacement materials for application in lightweight concrete. Physical and chemical characteristics of RHA and BBA were first analyzed. Three similar types of lightweight concrete were produced, a control type in which the binder was just CEMI cement (CTL) and two other types with 10% cement replacement with, respectively, RHA and BBA. All types of similar lightweight concrete were prepared to present the same workability by adjusting the amount of superplasticizer. Properties of concrete investigated were compressive and flexural strength at different ages, absorption by capillarity, resistivity and resistance to chloride ion penetration (CTH method) and accelerated carbonation. Test results obtained for 10% cement replacement level in lightweight concrete indicate that although the addition of BBA conducted to lower performance in terms of the degradation indicative tests, RHA led to the enhancement of mechanical properties, especially early strength and also fast ageing related results, further contributing to sustainable construction with energy saver lightweight concrete.
Resumo:
In order to inactivate enzymatic deterioration, whole rice bran samples were subjected to two stabilization methods. Changes in nutritional value in terms of, concerning chemical composition, minerals and fatty acid content, were evaluated to supplement existing data and promote the utilization of rice bran in the human diet. The following homemade heat treatments were applied: roasting on a conventional stove or heating in a microwave oven. Based on the results, the different heating methods affected sample composition, since the levels of some nutrients of treated samples showed significant changes (p<0.05) compared to corresponding raw samples. The rice bran treated on a conventional stove produced products with lower moisture (5.14±0.10 g/100 g) and nutrients such as sodium 11.8%; palmitic acid 9.9% and stearic acid 8.1%. The microwave oven procedure resulted in better nutrient preservation, with slightly higher moisture content (6.28±0.10 g/100 g), and appears to be a practical and rapid tool for home heat stabilization of rice bran.
Resumo:
Improvements in on-farm water and soil fertility management through water harvesting may prove key to up-grade smallholder farming systems in dry sub-humid and semi-arid sub-Sahara Africa (SSA). The currently experienced yield levels are usually less than 1 t ha-1, i.e., 3-5 times lower than potential levels obtained by commercial farmers and researchers for similar agro-hydrological conditions. The low yield levels are ascribed to the poor crop water availability due to variable rainfall, losses in on-farm water balance and inherently low soil nutrient levels. To meet an increased food demand with less use of water and land in the region, requires farming systems that provide more yields per water unit and/or land area in the future. This thesis presents the results of a project on water harvesting system aiming to upgrade currently practised water management for maize (Zea mays, L.) in semi-arid SSA. The objectives were to a) quantify dry spell occurrence and potential impact in currently practised small-holder grain production systems, b) test agro-hydrological viability and compare maize yields in an on-farm experiment using combinations supplemental irrigation (SI) and fertilizers for maize, and c) estimate long-term changes in water balance and grain yields of a system with SI compared to farmers currently practised in-situ water harvesting. Water balance changes and crop growth were simulated in a 20-year perspective with models MAIZE1&2. Dry spell analyses showed that potentially yield-limiting dry spells occur at least 75% of seasons for 2 locations in semi-arid East Africa during a 20-year period. Dry spell occurrence was more frequent for crop cultivated on soil with low water-holding capacity than on high water-holding capacity. The analysis indicated large on-farm water losses as deep percolation and run-off during seasons despite seasonal crop water deficits. An on-farm experiment was set up during 1998-2001 in Machakos district, semi-arid Kenya. Surface run-off was collected and stored in a 300m3 earth dam. Gravity-fed supplemental irrigation was carried out to a maize field downstream of the dam. Combinations of no irrigation (NI), SI and 3 levels of N fertilizers (0, 30, 80 kg N ha-1) were applied. Over 5 seasons with rainfall ranging from 200 to 550 mm, the crop with SI and low nitrogen fertilizer gave 40% higher yields (**) than the farmers’ conventional in-situ water harvesting system. Adding only SI or only low nitrogen did not result in significantly different yields. Accounting for actual ability of a storage system and SI to mitigate dry spells, it was estimated that a farmer would make economic returns (after deduction of household consumption) between year 2-7 after investment in dam construction depending on dam sealant and labour cost used. Simulating maize growth and site water balance in a system of maize with SI increased annual grain yield with 35 % as a result of timely applications of SI. Field water balance changes in actual evapotranspiration (ETa) and deep percolation were insignificant with SI, although the absolute amount of ETa increased with 30 mm y-1 for crop with SI compared to NI. The dam water balance showed 30% productive outtake as SI of harvested water. Large losses due to seepage and spill-flow occurred from the dam. Water productivity (WP, of ETa) for maize with SI was on average 1 796 m3 per ton grain, and for maize without SI 2 254 m3 per ton grain, i.e, a decerase of WP with 25%. The water harvesting system for supplemental irrigation of maize was shown to be both biophysically and economically viable. However, adoption by farmers will depend on other factors, including investment capacity, know-how and legislative possibilities. Viability of increased water harvesting implementation in a catchment scale needs to be assessed so that other down-stream uses of water remains uncompromised.
Resumo:
Programa de doctorado: Acuicultura: Producción controlada de animales acuáticos
Resumo:
Microalgae cultures are attracting great attentions in many industrial applications. However, one of the technical challenges is to cut down the capital and operational costs of microalgae production systems, with special difficulty in reactor design and scale-up. The thesis work open with an overview on the microalgae cultures as a possible answer to solve some of the upcoming planet issues and their applications in several fields. After the work offers a general outline on the state of the art of microalgae culture systems, taking a special look to the enclosed photobioreactors (PBRs). The overall objective of this study is to advance the knowledge of PBRs design and lead to innovative large scale processes of microalgae cultivation. An airlift flat panel photobioreactor was designed, modeled and experimentally characterized. The gas holdup, liquid flow velocity and oxygen mass transfer of the reactor were experimentally determined and mathematically modeled, and the performance of the reactor was tested by cultivation of microalgae. The model predicted data correlated well with experimental data, and the high concentration of suspension cell culture could be achieved with controlled conditions. The reactor was inoculated with the algal strain Scenedesmus obliquus sp. first and with Chlorella sp. later and sparged with air. The reactor was operated in batch mode and daily monitored for pH, temperature, and biomass concentration and activity. The productivity of the novel device was determined, suggesting the proposed design can be effectively and economically used in carbon dioxide mitigation technologies and in the production of algal biomass for biofuel and other bioproducts. Those research results favored the possibility of scaling the reactor up into industrial scales based on the models employed, and the potential advantages and disadvantages were discussed for this novel industrial design.
Resumo:
Resilience research has been applied to socioeconomic as well as for agroecological studies in the last 20 years. It provides a conceptual and methodological approach for a better understanding of interrelations between the performance of ecological and social systems. In the research area Alto Beni, Bolivia, the production of cocoa (Theobroma cacao L.), is one of the main sources of income. Farmers in the region have formed producers’ associations to enhance organic cocoa cultivation and obtain fair prices since the 1980s. In cooperation with the long-term system comparisons by the Research Institute of Organic Agriculture (FiBL) in Alto Beni, aspects of the field trial are applied for the use in on-farm research: a comparison of soil fertility, biomass and crop diversity is combined with qualitative interviews and participatory observation methods. Fieldwork is carried out together with Bolivian students through the Swiss KFPE-programme Echanges Universitaires. For the system comparisons, four different land-use types were classified according to their ecological complexity during a preliminary study in 2009: successional agroforestry systems, simple agroforestry systems (both organically managed and certified), traditional systems and conventional monocultures. The study focuses on interrelations between different ways of cocoa cultivation, livelihoods and the related socio-cultural rationales behind them. In particular this second aspect is innovative as it allows to broaden the biophysical perspective to a more comprehensive evaluation with socio-ecological aspects thereby increasing the relevance of the agronomic field studies for development policy and practice. Moreover, such a socio-ecological baseline allows to assess the potential of organic agriculture regarding resilience-building face to socio-environmental stress factors. Among others, the results of the pre-study illustrate local farmers’ perceptions of climate change and the consequences for the different crop-systems: all interviewees mentioned rising temperatures and/or an extended dry season as negative impacts more with regard to their own working conditions than to their crops. This was the case in particular for conventional monocultures and in plots where slash-and-burn cultivation was practised whereas for organic agroforestry systems the advantage of working in the shade was stressed indicating that their relevance rises in the context of climate change.
Resumo:
In this study we demonstrate RNA interference mediated knock-down of target gene expression in Echinococcus multilocularis primary cells on both the transcriptional and translational level. In addition, we report on an improved method for generating E. multilocularis primary cell mini-aggregates from in vitro cultivated metacestode vesicles, and on the cultivation of small numbers of small interfering RNA-transfected cells in vitro over an extended period of time. This allows assessments on the effects of RNA interference performed on Echinococcus primary cells with regard to growth, proliferation, differentiation of the parasite and the formation of novel metacestode vesicles in vitro.
Resumo:
Studies using cultured cells allow one to dissect complex cellular mechanisms in greater detail than when studying living organisms alone. However, before cultured cells can deliver meaningful results they must accurately represent the in vivo situation. Over the last three to four decades considerable effort has been devoted to the development of culture media which improve in vitro growth and modeling accuracy. In contrast to earlier large-scale, non-specific screening of factors, in recent years the development of such media has relied increasingly on a deeper understanding of the cell's biology and the selection of growth factors to specifically activate known biological processes. These new media now enable equal or better cell isolation and growth, using significantly simpler and less labor-intensive methodologies. Here we describe a simple method to isolate and cultivate epidermal keratinocytes from embryonic or neonatal skin on uncoated plastic using a medium specifically designed to retain epidermal keratinocyte progenitors in an undifferentiated state for improved isolation and proliferation and an alternative medium to support terminal differentiation.