870 resultados para Reverse Osmosis
Resumo:
BACKGROUND: Prostacyclin synthase (PGIS) metabolizes prostaglandin H(2), into prostacyclin. This study aimed to determine the expression profile of PGIS in nonsmall cell lung cancer (NSCLC) and examine potential mechanisms involved in PGIS regulation. METHODS: PGIS expression was examined in human NSCLC and matched controls by reverse transcriptase polymerase chain reaction (RT-PCR), Western analysis, and immunohistochemistry. A 204-patient NSCLC tissue microarray was stained for PGIS and cyclooxygenase 2 (COX2) expression. Staining intensity was correlated with clinical parameters. Epigenetic mechanisms underpinning PGIS promoter expression were examined using RT-PCR, methylation-specific PCR, and chromatin immunoprecipitation analysis. RESULTS: PGIS expression was reduced/absent in human NSCLC protein samples (P <.0001), but not mRNA relative to matched controls. PGIS tissue expression was higher in squamous cell carcinoma (P =.004) and in male patients (P <.05). No significant correlation of PGIS or COX2 expression with overall patient survival was observed, although COX2 was prognostic for short-term (2-year) survival (P <.001). PGIS mRNA expression was regulated by DNA CpG methylation and histone acetylation in NSCLC cell lines, with chromatin remodeling taking place directly at the PGIS gene. PGIS mRNA expression was increased by both demethylation agents and histone deacetylase inhibitors. Protein levels were unaffected by demethylation agents, whereas PGIS protein stability was negatively affected by histone deacetylase inhibitors. CONCLUSIONS: PGIS protein expression is reduced in NSCLC, and does not correlate with overall patient survival. PGIS expression is regulated through epigenetic mechanisms. Differences in expression patterns between mRNA and protein levels suggest that PGIS expression and protein stability are regulated post-translationally. PGIS protein stability may have an important therapeutic role in NSCLC. © 2011 American Cancer Society.
Resumo:
The European Early Lung Cancer (EUELC) project aims to determine if specific genetic alterations occurring in lung carcinogenesis are detectable in the respiratory epithelium. In order to pursue this objective, nonsmall cell lung cancer (NSCLC) patients with a very high risk of developing progressive lung cancer were recruited from 12 centres in eight European countries: France, Germany, southern Ireland, Italy, the Netherlands, Poland, Spain and the UK. In addition, NSCLC patients were followed up every 6 months for 36 months. A European Bronchial Tissue Bank was set up at the University of Liverpool (Liverpool, UK) to optimise the use of biological specimens. The molecular - pathological investigations were subdivided into specific work packages that were delivered by EUELC Partners. The work packages encompassed mutational analysis, genetic instability, methylation profiling, expression profiling utilising immunohistochemistry and chip-based technologies, as well as in-depth analysis of FHIT and RARβ genes, the telomerase catalytic subunit hTERT and genotyping of susceptibility genes in specific pathways. The EUELC project engendered a tremendous collaborative effort, and it enabled the EUELC Partners to establish protocols for assessing molecular biomarkers in early lung cancer with the view to using such biomarkers for early diagnosis and as intermediate end-points in future chemopreventive programmes. Copyright©ERS Journals Ltd 2009.
Resumo:
The insulin-receptor substrate family plays important roles in cellular growth, signaling, and survival. Two new members of this family have recently been isolated: IRS5/Dok4 and IRS6/Dok5. This study examines the expression of IRS5/DOK4 in a panel of lung cancer cell lines and tumor specimens. The results demonstrate that expression of IRS5/DOK4 is frequently altered with both elevated and decreased expression in non-small-cell lung cancer (NSCLC) tumor specimens. The altered expression of IRS5/DOK4 observed in tumor samples is not due to aberrant methylation. In vitro cell culture studies demonstrate that treatment of NSCLC cell lines with the histone deacetylase inhibitor trichostatin A (TSA) upregulates IRS5/DOK4. This finding indicates that expression is regulated epigenetically at the level of chromatin remodeling. Chromatin immunoprecipitation experiments confirm that the IRS5/DOK4 promoter has enhanced histone hyperacetylation following treatments with TSA. Finally, hypoxia was demonstrated to downregulate IRS5/DOK4 expression. This expression was restored by TSA. The clinical relevance of altered IRS5/DOK4 expression in NSCLC requires fur ther evaluation.
Resumo:
Gemcitabine is indicated in combination with cisplatin as first-line therapy for solid tumours including non-small cell lung cancer (NSCLC), bladder cancer and mesothelioma. Gemcitabine is an analogue of pyrimidine cytosine and functions as an anti-metabolite. Structurally, however, gemcitabine has similarities to 5-aza-2-deoxycytidine (decitabine/Dacogen®), a DNA methyltransferase inhibitor (DNMTi). NSCLC, mesothelioma and prostate cancer cell lines were treated with decitabine and gemcitabine. Reactivation of epigenetically silenced genes was examined by RT-PCR/qPCR. DNA methyltransferase activity in nuclear extracts and recombinant proteins was measured using a DNA methyltransferase assay, and alterations in DNA methylation status were examined using methylation-specific PCR (MS-PCR) and pyrosequencing. We observe a reactivation of several epigenetically silenced genes including GSTP1, IGFBP3 and RASSF1A. Gemcitabine functionally inhibited DNA methyltransferase activity in both nuclear extracts and recombinant proteins. Gemcitabine dramatically destabilised DNMT1 protein. However, DNA CpG methylation was for the most part unaffected by gemcitabine. In conclusion, gemcitabine both inhibits and destabilises DNA methyltransferases and reactivates epigenetically silenced genes having activity equivalent to decitabine at concentrations significantly lower than those achieved in the treatment of patients with solid tumours. This property may contribute to the anticancer activity of gemcitabine.
Resumo:
Mesothelioma is a rare malignancy arising from mesothelial cells lining the pleura and peritoneum. Advances in modern technology have allowed the development of array based approaches to the study of disease allowing researchers the opportunity to study many genes or proteins in a high-throughput fashion. This review describes the current knowledge surrounding array based approaches with respect to mesothelioma research. © 2009 by the International Association for the Study of Lung Cancer.
Resumo:
Faulted stacking layers are ubiquitously observed during the crystal growth of semiconducting nanowires (NWs). In this paper, we employ the reverse non-equilibrium molecular dynamics simulation to elucidate the effect of various faulted stacking layers on the thermal conductivity (TC) of silicon (Si) NWs. We find that the stacking faults can greatly reduce the TC of the Si NW. Among the different stacking faults that are parallel to the NW's axis, the 9R polytype structure, the intrinsic and extrinsic stacking faults (iSFs and eSFs) exert more pronounced effects in the reduction of TC than the twin boundary (TB). However, for the perpendicularly aligned faulted stacking layers, the eSFs and 9R polytype structures are observed to induce a larger reduction to the TC of the NW than the TB and iSFs. For all considered NWs, the TC does not show a strong relation with the increasing number of faulted stacking layers. Our studies suggest the possibility of tuning the thermal properties of Si NWs by altering the crystal structure via the different faulted stacking layers.
Resumo:
OBJECTIVE: This study explored gene expression differences in predicting response to chemoradiotherapy in esophageal cancer. PURPOSE:: A major pathological response to neoadjuvant chemoradiation is observed in about 40% of esophageal cancer patients and is associated with favorable outcomes. However, patients with tumors of similar histology, differentiation, and stage can have vastly different responses to the same neoadjuvant therapy. This dichotomy may be due to differences in the molecular genetic environment of the tumor cells. BACKGROUND DATA: Diagnostic biopsies were obtained from a training cohort of esophageal cancer patients (13), and extracted RNA was hybridized to genome expression microarrays. The resulting gene expression data was verified by qRT-PCR. In a larger, independent validation cohort (27), we examined differential gene expression by qRT-PCR. The ability of differentially-regulated genes to predict response to therapy was assessed in a multivariate leave-one-out cross-validation model. RESULTS: Although 411 genes were differentially expressed between normal and tumor tissue, only 103 genes were altered between responder and non-responder tumor; and 67 genes differentially expressed >2-fold. These included genes previously reported in esophageal cancer and a number of novel genes. In the validation cohort, 8 of 12 selected genes were significantly different between the response groups. In the predictive model, 5 of 8 genes could predict response to therapy with 95% accuracy in a subset (74%) of patients. CONCLUSIONS: This study has identified a gene microarray pattern and a set of genes associated with response to neoadjuvant chemoradiation in esophageal cancer. The potential of these genes as biomarkers of response to treatment warrants further investigation. Copyright © 2009 by Lippincott Williams & Wilkins.
Resumo:
INTRODUCTION In retrospective analyses of patients with nonsquamous non-small-cell lung cancer treated with pemetrexed, low thymidylate synthase (TS) expression is associated with better clinical outcomes. This phase II study explored this association prospectively at the protein and mRNA-expression level. METHODS Treatment-naive patients with nonsquamous non-small-cell lung cancer (stage IIIB/IV) had four cycles of first-line chemotherapy with pemetrexed/cisplatin. Nonprogressing patients continued on pemetrexed maintenance until progression or maximum tolerability. TS expression (nucleus/cytoplasm/total) was assessed in diagnostic tissue samples by immunohistochemistry (IHC; H-scores), and quantitative reverse-transcriptase polymerase chain reaction. Cox regression was used to assess the association between H-scores and progression-free/overall survival (PFS/OS) distribution estimated by the Kaplan-Meier method. Maximal χ analysis identified optimal cutpoints between low TS- and high TS-expression groups, yielding maximal associations with PFS/OS. RESULTS The study enrolled 70 patients; of these 43 (61.4%) started maintenance treatment. In 60 patients with valid H-scores, median (m) PFS was 5.5 (95% confidence interval [CI], 3.9-6.9) months, mOS was 9.6 (95% CI, 7.3-15.7) months. Higher nuclear TS expression was significantly associated with shorter PFS and OS (primary analysis IHC, PFS: p < 0.0001; hazard ratio per 1-unit increase: 1.015; 95%CI, 1.008-1.021). At the optimal cutpoint of nuclear H-score (70), mPFS in the low TS- versus high TS-expression groups was 7.1 (5.7-8.3) versus 2.6 (1.3-4.1) months (p = 0.0015; hazard ratio = 0.28; 95%CI, 0.16-0.52; n = 40/20). Trends were similar for cytoplasm H-scores, quantitative reverse-transcriptase polymerase chain reaction and other clinical endpoints (OS, response, and disease control). CONCLUSIONS The primary endpoint was met; low TS expression was associated with longer PFS. Further randomized studies are needed to explore nuclear TS IHC expression as a potential biomarker of clinical outcomes for pemetrexed treatment in larger patient cohorts. © 2013 by the International Association for the Study of Lung Cancer.
Resumo:
Lung cancer is the most important cause of cancer-related mortality. Resectability and eligibility for treatment with adjuvant chemotherapy is determined by staging according to the TNM classification. Other determinants of tumour behaviour that predict disease outcome, such as molecular markers, may improve decision-making. Activation of the gene encoding human telomerase reverse transcriptase (hTERT) is implicated in the pathogenesis of lung cancer, and consequently detection of hTERT mRNA might have prognostic value for patients with early stage lung cancer. A cohort of patients who underwent a complete resection for early stage lung cancer was recruited as part of the European Early Lung Cancer (EUELC) project. In 166 patients expression of hTERT mRNA was determined in tumour tissue by quantitative real-time RT-PCR and related to that of a house-keeping gene (PBGD). Of a subgroup of 130 patients tumour-distant normal tissue was additionally available for hTERT mRNA analysis. The correlation between hTERT levels of surgical samples and disease-free survival was determined using a Fine and Gray hazard model. Although hTERT mRNA positivity in tumour tissue was significantly associated with clinical stage (Fisher's exact test p=0.016), neither hTERT mRNA detectability nor hTERT mRNA levels in tumour tissue were associated with clinical outcome. Conversely, hTERT positivity in adjacent normal samples was associated with progressive disease, 28% of patients with progressive disease versus 7.5% of disease-free patients had detectable hTERT mRNA in normal tissue [adjusted HR: 3.60 (1.64-7.94), p=0.0015]. hTERT mRNA level in tumour tissue has no prognostic value for patients with early stage lung cancer. However, detection of hTERT mRNA expression in tumour-distant normal lung tissue may indicate an increased risk of progressive disease.
Resumo:
The transient leaf assay in Nicotiana benthamiana is widely used in plant sciences, with one application being the rapid assembly of complex multigene pathways that produce new fatty acid profiles. This rapid and facile assay would be further improved if it were possible to simultaneously overexpress transgenes while accurately silencing endogenes. Here, we report a draft genome resource for N. benthamiana spanning over 75% of the 3.1 Gb haploid genome. This resource revealed a two-member NbFAD2 family, NbFAD2.1 and NbFAD2.2, and quantitative RT-PCR (qRT-PCR) confirmed their expression in leaves. FAD2 activities were silenced using hairpin RNAi as monitored by qRT-PCR and biochemical assays. Silencing of endogenous FAD2 activities was combined with overexpression of transgenes via the use of the alternative viral silencing-suppressor protein, V2, from Tomato yellow leaf curl virus. We show that V2 permits maximal overexpression of transgenes but, crucially, also allows hairpin RNAi to operate unimpeded. To illustrate the efficacy of the V2-based leaf assay system, endogenous lipids were shunted from the desaturation of 18:1 to elongation reactions beginning with 18:1 as substrate. These V2-based leaf assays produced ~50% more elongated fatty acid products than p19-based assays. Analyses of small RNA populations generated from hairpin RNAi against NbFAD2 confirm that the siRNA population is dominated by 21 and 22 nt species derived from the hairpin. Collectively, these new tools expand the range of uses and possibilities for metabolic engineering in transient leaf assays. © 2012 Naim et al.
Resumo:
Tobacco plants were transformed with a chimeric transgene comprising sequences encoding β-glucuronidase (GUS) and the satellite RNA (satRNA) of cereal yellow dwarf luteovirus. When transgenic plants were infected with potato leafroll luteovirus (PLRV), which replicated the transgene-derived satRNA to a high level, the satellite sequence of the GUS:Sat transgene became densely methylated. Within the satellite region, all 86 cytosines in the upper strand and 73 of the 75 cytosines in the lower strand were either partially or fully methylated. In contrast, very low levels of DNA methylation were detected in the satellite sequence of the transgene in uninfected plants and in the flanking nonsatellite sequences in both infected and uninfected plants. Substantial amounts of truncated GUS:Sat RNA accumulated in the satRNA-replicating plants, and most of the molecules terminated at nucleotides within the first 60 bp of the satellite sequence. Whereas this RNA truncation was associated with high levels of satRNA replication, it appeared to be independent of the levels of DNA methylation in the satellite sequence, suggesting that it is not caused by methylation. All the sequenced GUS:Sat DNA molecules were hypermethylated in plants with replicating satRNA despite the phloem restriction of the helper PLRV. Also, small, sense and antisense ∼22 nt RNAs, derived from the satRNA, were associated with the replicating satellite. These results suggest that the sequence-specific DNA methylation spread into cells in which no satRNA replication occurred and that this was mediated by the spread of unamplified satRNA and/or its associated 22 nt RNA molecules.
Resumo:
We report here that the expression of endogenous microRNAs (miRNAs) can be efficiently silenced in Arabidopsis thaliana (Arabidopsis) using artificial miRNA (amiRNA) technology. We demonstrate that an amiRNA designed to target a mature miRNA directs silencing against all miRNA family members, whereas an amiRNA designed to target the stem-loop region of a miRNA precursor transcript directs silencing against only the individual family member targeted. Furthermore, our results indicate that amiRNAs targeting both the mature miRNA and stem-loop sequence direct RNA silencing through cleavage of the miRNA precursor transcript, which presumably occurs in the nucleus of a plant cell during the initial stages of miRNA biogenesis. This suggests that small RNA (sRNA)-guided RNA cleavage in plants occurs not only in the cytoplasm, but also in the nucleus. Many plant miRNA gene families have been identified via sequencing and bioinformatic analysis, but, to date, only a small tranche of these have been functionally characterized due to a lack of effective forward or reverse genetic tools. Our findings therefore provide a new and powerful reverse-genetic tool for the analysis of miRNA function in plants. © The Author 2010. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPP and IPPE, SIBS, CAS.
Resumo:
Two transgenic callus lines of rice, stably expressing a β-glucuronidase (GUS) gene, were supertransformed with a set of constructs designed to silence the resident GUS gene. An inverted-repeat (i/r) GUS construct, designed to produce mRNA with self-complementarity, was much more effective than simple sense and antisense constructs at inducing silencing. Supertransforming rice calluses with a direct-repeat (d/r) construct, although not as effective as those with the i/r construct, was also substantially more effective in silencing the resident GUS gene than the simple sense and antisense constructs. DNA hybridisation analyses revealed that every callus line supertransformed with either simple sense or antisense constructs, and subsequently showing GUS silencing, had the silence-inducing transgenes integrated into the plant genome in inverted-repeat configurations. The silenced lines containing i/r and d/r constructs did not necessarily have inverted-repeat T-DNA insertions. There was significant methylation of the GUS sequences in most of the silenced lines but not in the unsilenced lines. However, demethylation treatment of silenced lines with 5-azacytidine did not reverse the post-transcriptional gene silencing (PTGS) of GUS. Whereas the levels of RNA specific to the resident GUS gene were uniformly low in the silenced lines, RNA specific to the inducer transgenes accumulated to a substantial level, and the majority of the i/r RNA was unpolyadenylated. Altogether, these results suggest that both sense- and antisense-mediated gene suppression share a similar molecular basis, that unpolyadenylated RNA plays an important role in PTGS, and that methylation is not essential for PTGS.
Resumo:
Bone metastases are severely debilitating and have a significant impact on the quality of life of women with metastatic breast cancer. Treatment options are limited and in order to develop more targeted therapies, improved understanding of the complex mechanisms that lead to bone lesion development are warranted. Interestingly, whilst prostate-derived bone metastases are characterised by mixed or osteoblastic lesions, breast-derived bone metastases are characterised by osteolytic lesions, suggesting unique regulatory patterns. This study aimed to measure the changes in bone formation and bone resorption activity at two time-points (18 and 36 days) during development of the bone lesion following intratibial injection of MDA-MB-231 human breast cancer cells into the left tibiae of Severely Combined Immuno-Deficient (SCID) mice. The contralateral tibia was used as a control. Tibiae were extracted and processed for undecalcified histomorphometric analysis. We provide evidence that the early bone loss observed following exposure to MDA-MB-231 cells was due to a significant reduction in mineral apposition rate, rather than increased levels of bone resorption. This suggests that osteoblast activity was impaired in the presence of breast cancer cells, contrary to previous reports of osteoclast-dependent bone loss. Furthermore mRNA expression of Dickkopf Homolog 1 (DKK-1) and Noggin were confirmed in the MDA-MB-231 cell line, both of which antagonise osteoblast regulatory pathways. The observed bone loss following injection of cancer cells was due to an overall thinning of the trabecular bone struts rather than perforation of the bone tissue matrix (as measured by trabecular width and trabecular separation, respectively), suggesting an opportunity to reverse the cancer-induced bone changes. These novel insights into the mechanisms through which osteolytic bone lesions develop may be important in the development of new treatment strategies for metastatic breast cancer patients.
Resumo:
Background Ghrelin is a 28 amino acid peptide hormone that is expressed in the stomach and a range of peripheral tissues, where it frequently acts as an autocrine/paracrine growth factor. Ghrelin is modified by a unique acylation required for it to activate its cognate receptor, the growth hormone secretagogue receptor (GHSR), which mediates many of the actions of ghrelin. Recently, the enzyme responsible for adding the fatty acid residue (octanoyl/acyl group) to the third amino acid of ghrelin, GOAT (ghrelin O-acyltransferase), was identified. Methods We used cell culture, quantitative real-time reverse transcription (RT)-PCR and immunohistochemistry to demonstrate the expression of GOAT in prostate cancer cell lines and tissues from patients. Real-time RT-PCR was used to demonstrate the expression of prohormone convertase (PC)1/3, PC2 and furin in prostate cancer cell lines. Prostate-derived cell lines were treated with ghrelin and desacyl ghrelin and the effect on GOAT expression was measured using quantitative RT-PCR. Results We have demonstrated that GOAT mRNA and protein are expressed in the normal prostate and human prostate cancer tissue samples. The RWPE-1 and RWPE-2 normal prostate-derived cell lines and the LNCaP, DU145, and PC3 prostate cancer cell lines express GOAT and at least one other enzyme that is necessary to produce mature, acylated ghrelin from proghrelin (PC1/3, PC2 or furin). Finally, ghrelin, but not desacyl ghrelin (unacylated ghrelin), can directly regulate the expression of GOAT in the RWPE-1 normal prostate derived cell line and the PC3 prostate cancer cell line. Ghrelin treatment (100nM) for 6 hours significantly decreased GOAT mRNA expression two-fold (P < 0.05) in the PC3 prostate cancer cell line, however, ghrelin did not regulate GOAT expression in the DU145 and LNCaP prostate cancer cell lines. Conclusions This study demonstrates that GOAT is expressed in prostate cancer specimens and cell lines. Ghrelin regulates GOAT expression, however, this is likely to be cell-type specific. The expression of GOAT in prostate cancer supports the hypothesis that the ghrelin axis has autocrine/paracrine roles. We propose that the RWPE-1 prostate cell line and the PC3 prostate cancer cell line may be useful for investigating GOAT regulation and function.