978 resultados para Refractive index sensor
Resumo:
We have observed a positive change or refractive index and formation of waveguides in YAG:Cr4+ crystals, exposed to a high-intensity femtosecond laser beam. The technique is potentially suitable for fabrication of waveguide lasers in crystal materials.
Resumo:
Femtosecond-pulsed laser writing of waveguides, a few mm long, is demonstrated; waveguides were written orthogonally to the writing beam inside the bulk of ErIII-doped oxyfluoride glasses at a depth of 160 mum. The writing beam was 795 nm wavelength, 54 fs pulse duration and 11 MHz repetition rate. Tracks were written at pulse energies of 13.1 nJ to 26.1 nJ and sample translational velocity of 10 mmmiddot.s-1 to 28 mmmiddots-1. The influence of translational velocity and pulse energy on the cross-sectional shape and integrity of the written tracks is reported. Tracks tend to be narrower as the pulse energy is lowered or translational velocity decreased. Above 22.9 nJ, pulse energy, tracks tend to crack. The estimated refractive index profile of one track has a maximum increase of refractive index of 0.003 at the centre. These glasses normally form nano-glass-ceramics on heat treatment just above the glass transformation temperature (Tg). Here, a post-fs-writing heat-treatment just above Tg causes nano-ceramming of the glass sample and removes a light-guiding peripheral region of the fs-written tracks suggesting that this region may have been fs-modified by stress alone. Waveguiding at 651 nm and 973 nm wavelengths, and upconversion, are demonstrated in optimally written tracks.
Resumo:
We study numerically depressed-index cladding, buried, micro-structured optical waveguides that can be formed in a lithium niobate crystal by femtosecond laser writing. We demonstrate to which extent the waveguiding properties can be controlled by the waveguide geometry at the relatively moderate induced refractive index contrasts that are typical of the direct femtosecond inscription.
Resumo:
A variety of methods have been reviewed for obtaining parallel or perpendicular alignment in liquid-crystal cells. Some of these methods have been selected and developed and were used in polarised spectroscopy, dielectric and electro-optic studies. Also, novel dielectric and electro-optic cells were constructed for use over a range of temperature. Dielectric response of thin layers of E7 and E8 (eutectic mixture liquid-crystals) have been measured in the frequency range (12 Hz-100 kHz) and over a range of temperature (183-337K). Dielectric spectra were also obtained for supercooled E7 and E8 in the Hz and kHz range. When the measuring electric field was parallel to the nematic director, one loss peak (low-frequency relaxation process) was observed for E7 and for E8, that exhibits a Debye-type behaviour in the supercooled systems. When the measuring electric field was perpendicular to the nematic director, two resolved dielectric processes have been observed. The phase transitions, effective molecular polarisabilities, anisotropy of polarisabilities and order parameters of three liquid crystal homologs (5CB, 6CB, and 7CB), 60CB and three eutectic nematic mixtures E7, E8, and E607 were calculated using optical and density data measured at several temperatures. The order parameters calculated using the different methods of Vuks, Neugebauer, Saupe-Maier, and Palffy-Muhoray are nearly the same for the liquid crystals considered in the present study. Also, the interrelationship between density and refractive index and the molecular structure of these liquid crystals were established. Accurate dielectric and dipole results of a range of liquid-crystal forming molecules at several temperatures have reported. The role of the cyano-end group, biphenyl core, and flexible tail in molecular association, were investigated using the dielectric method for some molecules which have a structural relationship to the nematogens. Analysis of the dielectric data for solution of the liquid-crystals indicated a high molecular association, comparable to that observed in the nematic or isotropic phases. Electro-optic Kerr effect were investigated for some alkyl cyanobiphenyls, their nematic mixtures and the eutectic mixture liquid-crystals E7 and E8 in the isotropic phase and solution. The Kerr constant of these liquid crystals found to be very high at the nematic-isotropic transition temperatures as the molecules are expected to be highly ordered close to phase transition temperatures. Dynamic Kerr effect behaviour and transient molecular reorientation were also observed in thin layers of some alkyl cyanobiphenyls. Dichroic ratio R and order parameters of solutions containing some azo and anthraquinone dyes in the nematic solvent (E7 and E8), were investigated by the measurement of the intensity of the absorption bands in the visible region of parallel aligned samples. The effective factors on the dichroic ratio of the dyes dissolved in the nematic solvents were determined and discussed.
Resumo:
We report on a new technique to reconstruct the 3D dielectric function change in transparent dielectric materials and the application of the technique for on-line monitoring of refractive index modification in BK7 glass during direct femtosecond laser microfabrication. The complex optical field scattered from the modified region is measured using two-beam, single-shot interferogram and the distribution of the modified refractive index is reconstructed by numerically solving the inverse scattering problem in Born approximation. The optical configuration suggested is further development of digital holographic microscopy (DHM). It takes advantage of high spatial resolution and almost the same optical paths for both interfering beams, and allows ultrafast time resolution.
Resumo:
Manvers coal has been pyrolysed to 500ºC in a stirred autoclave under various pressures of nitrogen (pyrolysis) and hydrogen (hydropyrolysis). All products were investigated. Pyrolysis of coals involves the transfer of hydrogen atoms from one part of their structure to another. In the above experiments there was no way of labelling the hydrogen or of distinguishing between hydrogen which was initially part of the coal and hydrogen originating in the external atmosphere. Consequently, Manvers coal has been pyrolysed in an atmosphere of deuterium in order to obtain greater insight into the mechanism of hydropyrolysis. In particular it was hoped to distinguish between direct hydrogenation (deuteration!) of the coal and the products of pyrolysis and the 'shuttling' of hydrogen atoms between different parts of the pyrolysing coal. The addition to the coal of 5% (wt.% of coal) of either tetralin or pyrite was also studied. A variety of techniques were used to analyse the products of pyrolysis: gas chromatography - mass spectrometry and high performance liquid chromatography for tars; thermal conductivity gas chromatography and high resolution mass spectrometry for gases; methanol densities, microporosities and diffuse reflectance infra red spectroscopy for the cokes (chars); refractive index to determine deuterium in the liquor. An attempt has been made to apply basic thermodynamics to reactions which are likely to occur in the hydropyrolysis of coals. Diffusion and effusion rates for hydrogen and tar molecules have also been estimated.
Resumo:
In this thesis, I describe studies on fabrication, spectral characteristics and applications of tilted fibre gratings (TFGs) with small, large and 45° tilted structures and novel developments in fabrication of fibre Bragg gratings (FBGs) and long period gratings (LPGs) in normal silica and mid-infrared (mid-IR) glass fibres using near-IR femtosecond laser. One of the major contributions presented in this thesis is the systematic investigation of structures, inscription methods and spectral, polarisation dependent loss (PDL) and thermal characteristics of TFGs with small (<45°), large (>45°) and 45° tilted structures. I have experimentally characterised TFGs, obtaining relationships between the radiation angle, central wavelength of the radiation profile, Bragg resonance and the tilt angle, which are consistent with theoretical simulation based on the mode-coupling theory. Furthermore, thermal responses have been measured for these three types of TFGs, showing the transmission spectra of large and 45° TFGs are insensitive to the temperature change, unlike the normal and small angle tilted FBGs. Based on the distinctive optical properties, TFGs have been developed into interrogation system and sensors, which form the other significant contributions of the work presented in this thesis. The 10°-TFG based 800nm WDM interrogation system can function not just as an in-fibre spectrum analyser but also possess refractive index sensing capability. By utilising the unique polarisation properties, the 81 °-TFG based sensors are capable of sensing the transverse loading and twisting with sensitivities of 2.04pW/(kg/m) and 145.90pW/rad, repectively. The final but the most important contribution from the research work presented in this thesis is the development of novel grating inscription techniques using near-IR femtosecond laser. A number of LPGs and FBGs were successfully fabricated in normal silica and mid-IR glass fibres using point-by-point and phase-mask techniques. LPGs and 1st and 2nd order FBGs have been fabricated in these mid-IR glass fibres showing resonances covering the wavelength range from 1200 to 1700nm with the strengths up to 13dB. In addition, the thermal and strain sensitivities of these gratings have been systematically investigated. All the results from these initial but systematic works will provide useful function characteristics information for future fibre grating based devices and applications in mid-IR range.
Resumo:
A series of surface plasmonic fibre devices were fabricated by depositing multiple thin coatings on a lapped section of a standard single mode telecoms fibre forming a D-shaped section and then inscribing a grating-type structure using UV light. The coatings consisted of base coatings of semi-conductor (germanium) and dielectric (silicon dioxide) materials, followed by different metals. These fibre devices showed high spectral refractive index sensitivity with high coupling efficiency in excess of 40 dB for indices in the aqueous regime and below, with estimated index sensitivities of Lambda lambda/Lambda n = 90-800 nm from 1 to 1.15 index range and Lambda lambda/Lambda n = 1200-4000 nm for refractive indices from 1.33 to 1.39. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We present a thorough study on the development of a polymer optical fibre-based tuneable filter utilizing an intra-core Bragg grating that is electrically tuneable, operating at 1.55 µm. The Bragg grating is made tuneable using a thin-film resistive heater deposited on the surface of the fibre. The polymer fibre was coated via the photochemical deposition of a Pd/Cu metallic layer with the procedure induced by VUV radiation at room temperature. The resulting device, when wavelength tuned via Joule heating, underwent a wavelength shift of 2 nm for a moderate input power of 160 mW, a wavelength to input power coefficient of -13.4 pm mW-1 and time constant of 1.7 s-1. A basic theoretical study verified that for this fibre type one can treat the device as a one-dimensional system. The model was extended to include the effect of input electrical power changes on the refractive index of the fibre and subsequently to changes in the Bragg wavelength of the grating, showing excellent agreement with the experimental measurements.
Resumo:
We describe an experimental demonstration of a novel technique for liquid refractometry. A channeled spectrum is produced from an optical beam generated by a diode laser operating below threshold by intercepting half of the beam with a liquid cell. The spectrum is analyzed using a grating and a linear CCD array and provides information on the refractive index of the liquid. The experimental results show that accuracies of better than 0.3% in the index may be obtained with the present method.
Resumo:
Water is a common impurity of jet fuel, and can exist in three forms: dissolved in the fuel, as a suspension and as a distinct layer at the bottom of the fuel tank. Water cannot practically be eliminated from fuel but must be kept to a minimum as large quantities can cause engine problems, particularly when frozen, and the interface between water and fuel acts as a breeding ground for biological contaminants. The quantities of dissolved or suspended water are quite small, ranging from about 10 ppm to 150 ppm. This makes the measurement task difficult and there is currently a lack of a convenient, electrically passive system for water-in-fuel monitoring; instead the airlines rely on colorimetric spot tests or simply draining liquid from the bottom of fuel tanks. For all these reason, people have explored different ways to detect water in fuel, however all these approaches have problems, e.g. they may not be electrically passive or they may be sensitive to the refractive index of the fuel. In this paper, we present a simple, direct and sensitive approach involving the use of a polymer optical fibre Bragg grating to detect water in fuel. The principle is that poly(methyl methacrylate) (PMMA) can absorb moisture from its surroundings (up to 2% at 23 °C), leading to both a swelling of the material and an increase in refractive index with a consequent increase in the Bragg wavelength of a grating inscribed in the material.
Resumo:
We report an implementation of optical fibre sensors based on fibre Bragg gratings with excessively tilted (>45°) structures, showing distinctive polarisation characteristics, desirable low thermal-cross-sensitivity and enhanced responsivity to surrounding-medium-refractive-index.
Resumo:
We report for the first time forward propagating cladding modes coupling by using tilted gratings. The spectral responses of these gratings were investigated and their thermal characteristics and sensitivity to environmental refractive index were evaluated.
Resumo:
We report on inscription of microchannels of different widths in optical fiber using femtosecond (fs) laser inscription assisted chemical etching and the narrowest channel has been created with a width down to only 1.2µm. Microchannels with 5µm and 35µm widths were fabricated together with Fabry-Pérot (FP) cavities formed by UV laser written fiber Bragg gratings (FBGs), creating high function and linear response refractometers. The device with a 5µm microchannel has exhibited a refractive index (RI) detection range up to 1.7, significantly higher than all fiber grating RI sensors. In addition, the microchannel FBG FP structures have been theoretically simulated showing excellent agreement with experimental measured characteristics.
Resumo:
High-sensitivity optical chemsensors have been implemented by exploiting fibre Bragg grating structures UV-inscribed in D-shape, single-mode and multimode fibres and post-sensitized by hydrofluoric acid (HF) etching treatment. We have demonstrated that the Bragg grating structures which are intrinsically insensitive to chemicals can be sensitized by effective etching. All etched devices possess refractive index sensing capability that offers an encoding function to chemical concentrations. Most etched devices have been used to measure the concentrations of sugar solutions, showing a potential capability of detecting concentration changes as small as 0.1–0.5%.