945 resultados para Reflexive conversion
Resumo:
Erbium Er3+ and ytterbium Yb3+ codoped fluoro-phosphate glasses belonging to the system NaPO3-YF 3-BaF2-CaF2 have been prepared by the classical melt-quenching technique. Glasses containing up to 10 wt% of erbium and ytterbium fluorides have been obtained and characterized using differential scanning calorimetry (DSC) and UV-visible and near-infrared spectroscopy. Transparent and homogeneous glass-ceramics have been then reproducibly synthetized by appropriate heat treatment above glass transition temperature of a selected parent glass. Structural investigations of the crystallization performed through X-ray diffractometry (XRD) and scanning electron microscopy (SEM) have evidenced the formation of fluorite-type cubic crystals based during the devitrification process. Finally, infrared to visible up-conversion emission upon excitation at 975 nm has been studied on the Er3+ and Yb 3+ codoped glass-ceramics as a function of thermal treatment time. A large enhancement of intensity of the up-conversion emissions-about 150 times- has been observed in the glass-ceramics if compared to the parent glass one, suggesting an incorporation of the rare-earth ions (REI) into the crystalline phase. © 2012 The American Ceramic Society.
Resumo:
Objective: The aim of this study was to evaluate the degree of conversion and hardness of different composite resins, photo-activated for 40 s with two different light guide tips, fiber optic and polymer. Methods: Five specimens were made for each group evaluated. The percentage of unreacted carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm-1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm-1. The Vickers hardness measurements were performed in a universal testing machine. A 50 gf load was used and the indenter with a dwell time of 30 seconds. The degree of conversion and hardness mean values were analyzed separately by ANOVA and Tukey's test, with a significance level set at 5%. Results: The mean values of degree of conversion for the polymer and fiber optic light guide tip were statistically different (P<.001). The hardness mean values were statistically different among the light guide tips (P<.001), but also there was difference between top and bottom surfaces (P<.001). Conclusions: The results showed that the resins photo-activated with the fiber optic light guide tip promoted higher values for degree of conversion and hardness.
Resumo:
The effect of amorphous (am-), monoclinic (m-), and tetragonal (t-) ZrO2 phase on the physicochemical and catalytic properties of supported Cu catalysts for ethanol conversion was studied. The electronic parameters of Cu/ZrO2 were determined by in situ XAS, and the surface properties of Cu/ZrO2 were defined by XPS and DRIFTS of CO-adsorbed. The results demonstrated that the kind of ZrO2 phase plays a key role in the determination of structure and catalytic properties of Cu/ZrO 2 catalysts predetermined by the interface at Cu/ZrO2. The electron transfer between support and Cu surface, caused by the oxygen vacancies at m-ZrO2 and am-ZrO2, is responsible for the active sites for acetaldehyde and ethyl acetate formation. The highest selectivity to ethyl acetate for Cu/m-ZrO2 catalyst up to 513 K was caused by the optimal ratio of Cu0/Cu+ species and the high density of basic sites (O2-) associated with the oxygen mobility from the bulk m-ZrO2. © 2013 Elsevier Inc. All rights reserved.
Resumo:
This study investigated the physicochemical properties of the new formulation of the glass ionomer cements through hardness test and degree of conversion by infrared spectroscopy (FTIR). Forty specimens (n = 40) were made in a metallic mold (4 mm diameter × 2 mm thickness) with two resin-modified glass ionomer cements, Vitrebond™ and Vitrebond™ Plus (3M/ ESPE). Each specimen was light cured with blue LED with power density of 500 mW/cm2during 30 s. Immediately after light curing, 24h, 48h and 7 days the hardness and degree of conversion was determined. The Vickers hardness was performed by the MMT-3 microhardness tester using load of 50 gm force for 30 seconds. For degree of conversion, the specimens were pulverized, pressed with KBr and analyzed with FT-IR (Nexus 470). The statistical analysis of the data by ANOVA showed that the Vitrebond™ and Vitrebond™ Plus were no difference significant between the same storage times (p > 0.05). For degree of conversion, the Vitrebond™ and Vitrebond™ Plus were statistically different in all storage times after light curing. The Vitrebond™ showed higher values than Vitrebond™ Plus (p < 0.05). The performance of Vitrebond™ had greater results for degree of conversion than Vitrebond™ Plus. The correlation between hardness and degree of conversion was no evidence in this study.
Resumo:
Wurtzite-type Zn1-xMnxO (x = 0, 0.03, 0.05, 0.07) nanostructures were successfully synthesised using a simple microwave-assisted hydrothermal route and their catalytic properties were investigated in the cellulose conversion. The morphology of the nanocatalysts is dopant-dependent. Pure ZnO presented multi-plate morphology with a flower-like shape of nanometric sizes, while the Zn0.97Mn0.03O sample is formed by nanoplates with the presence of spherical nanoparticles; the Zn0.95Mn0.05O and Zn0.93Mn0.07O samples are mainly formed by nanorods with the presence of a small quantity of spherical nanoparticles. The catalyst without Mn did not show any catalytic activity in the cellulose conversion. The Mn doping promoted an increase in the density of weak acid sites which, according to the catalytic results, favoured promotion of the reaction. © 2013 Institute of Chemistry, Slovak Academy of Sciences.
Resumo:
Processes involving visible to infrared energy conversion are presented for Pr3+-Yb3+ co-doped fluoroindate glasses. The emission in the visible and infrared regions, the luminescence decay time of the Pr 3+:3P0 → 3H4 (482 nm), Pr3+:1D2 → 3H6 (800 nm), Yb3+:2F5/2 → 2F 7/2 (1044 nm) transitions and the photoluminescence excitation spectra were measured in Pr3+ samples and in Pr3+-Yb 3+ samples as a function of the Yb3+ concentration. In addition, energy transfer efficiencies were estimated from Pr3+: 3P0 and Pr3+:1D2 levels to Yb3+:2F7/2 level. Down-Conversion (DC) emission is observed due to a combination of two different processes: 1-a one-step cross relaxation (Pr3+:3P0 → 1G4; Yb3+:2F7/2 → 2F5/2) resulting in one photon emitted by Pr3+ (1G4 → 3H5) and one photon emitted by Yb3+ (2F7/2 → 2F5/2); 2-a resonant two-step first order energy transfer, where the first part of energy is transferred to Yb3+ neighbor through cross relaxation (Pr3+:3P0 → 1G4; Yb3+:2F7/2 → 2F5/2) followed by a second energy transfer step (Pr 3+:1G4 → 3H4; Yb3+:2F7/2 → 2F5/2). A third process leading to one IR photon emission to each visible photon absorbed involves cross relaxation energy transfer (Pr3+: 1D2 → 3F4; Yb 3+:2F7/2 → 2F5/2). © 2013 Elsevier B.V. All rights reserved.
Resumo:
Introduction: The aim of this study was to assess the influence of curing time and power on the degree of conversion and surface microhardness of 3 orthodontic composites. Methods: One hundred eighty discs, 6 mm in diameter, were divided into 3 groups of 60 samples according to the composite used-Transbond XT (3M Unitek, Monrovia, Calif), Opal Bond MV (Ultradent, South Jordan, Utah), and Transbond Plus Color Change (3M Unitek)-and each group was further divided into 3 subgroups (n = 20). Five samples were used to measure conversion, and 15 were used to measure microhardness. A light-emitting diode curing unit with multiwavelength emission of broad light was used for curing at 3 power levels (530, 760, and 1520 mW) and 3 times (8.5, 6, and 3 seconds), always totaling 4.56 joules. Five specimens from each subgroup were ground and mixed with potassium bromide to produce 8-mm tablets to be compared with 5 others made similarly with the respective noncured composite. These were placed into a spectrometer, and software was used for analysis. A microhardness tester was used to take Knoop hardness (KHN) measurements in 15 discs of each subgroup. The data were analyzed with 2 analysis of variance tests at 2 levels. Results: Differences were found in the conversion degree of the composites cured at different times and powers (P < 0.01). The composites showed similar degrees of conversion when light cured at 8.5 seconds (80.7%) and 6 seconds (79.0%), but not at 3 seconds (75.0%). The conversion degrees of the composites were different, with group 3 (87.2%) higher than group 2 (83.5%), which was higher than group 1 (64.0%). Differences in microhardness were also found (P < 0.01), with lower microhardness at 8.5 seconds (35.2 KHN), but no difference was observed between 6 seconds (41.6 KHN) and 3 seconds (42.8 KHN). Group 3 had the highest surface microhardness (35.9 KHN) compared with group 2 (33.7 KHN) and group 1 (30.0 KHN). Conclusions: Curing time can be reduced up to 6 seconds by increasing the power, with a slight decrease in the degree of conversion at 3 seconds; the decrease has a positive effect on the surface microhardness.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
It highlights the innovation importance in the current society and presents innovation indicators applied in 125 countries. We made an analysis in the 80 variables distributed through seven GII pillars, trying to identify the direct, indirect or null incidences of the knowledge conversion way described by the SECI Process. The researched revealed the fact that knowledge management, in this case specifically the knowledge conversion SECI Process, is present in the variables that, according to the GII, make clear innovative activity in countries.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Wood basic density (BD) is related to other wood characteristics and its determination is important in forest inventory, though BD must be differentiated from the apparent density (AD), which relates to the moisture content (MC) of wood. The aim of this study is to demonstrate a reliable conversion from BD to AD for any MC of Eucalyptus grandis wood based on two exponential and linear models that relate volumetric shrinkage to MC. To this end, wood specimens were submitted to drying and the volumetric shrinkage was determined as a function of MC. The two models proved to be efficient in the conversion of BD to AD and vice versa.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: This study aims to evaluate the degree of conversion (DC) and hydrolytic degradation through the Vickers hardness test (HV) of a nanofilled (Filtek™ Z-250, 3M) and a microhybrid (Filtek™Supreme-XT, 3M) composite resin. Materials and methods: Eight disk-shaped specimens (4 mm diameter × 2 mm thick, ISO 4049) of each material were prepared for each test. Composites were inserted into single increment in a metallic matrix and light-cured for 40 seconds. VH readings were performed for each specimen at predetermined intervals: immediately after polymerization (control), 1, 2, 3, 7, 14, 21, 30 and 180 days. After curing, initial hardness measurements were performed and the specimens were immersed in artificial saliva at 37°C. For DC (%), specimens were ground, pressed with KBr and analyzed by FT-IR spectrophotometer. Results: Student t-test showed that there was no difference between the resins for DC (p = 0.252). ANOVA analysis revealed that Z-250 VH means were all greater than S-XT, for both top and bottom surfaces, whatever the storage-period in artificial saliva (p < 0.001). After 180 days of storage, the hardness obtained for S-XT was similar with that at the baseline, for both top and bottom surfaces. While for Z-250 hardness was not significantly different from baseline only for top surface, but there was a significant decrease observed in hardness for bottom surface. Conclusion: The materials tested showed no evidence of hydrolytic degradation in a significant way, in a 6-month storagetime in artificial saliva. Nanofilled resin presents a monomer conversion comparable to the conventional microhybrid.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)