937 resultados para Recycled tires
Resumo:
It is presented a solar cooker made with a parabolic reflector composed by a composite material. For this purpose, it was utilized a cast concrete with a parabolic profile obtained by means of modeling. It will be demonstrated the manufacturing process and settings, as well as tests results, in order to determine the contact temperature and cooking time of some foods. This solar cooker presents the following main characteristics: the concentration method, low cost and easy manufacturing process. It was performed by employing recycled materials such as cement, plaster, crushed polystyrene and wheels. The captation area measures 1 square meter and its parabole was covered with a mirrors measuring 25 cm2. A temperature higher than 650°C was obtained. Furthermore, it has been demonstrated that the cooking viability for several type of foods such as beans, potatoes, rice, yams and pasta can be used in two meals for a family of four. In addition, the advantages of this cooker were analysed in comparison with others described in literature as well as those operating on gas. Especially in Northeast of Brazil, where there is a potential for solar energy, this prototype is an important tool, because it avoids not only desertification, but also pollutants from burning firewoods which cause ecological imbalance
Resumo:
The use of composite materials and alternative is being increased every day, as it becomes more widespread awareness that the use of renewable and not harmful to the environment is part of a new environmentally friendly model. Since its waste (primarily fiberglass) can not be easily recycled by the difficulty that still exists in this process, since they have two phases mixed, a polymeric matrix thermoset difficult to recycle because it is infusible and phase of fiber reinforcements. Thermoset matrix composites like Polyester + fiberglass pose a threat due to excessive discharge. Aiming to minimize this problem, aimed to reuse the composite Polyester + fiber glass, through the wastes obtained by the grinding of knifes and balls. These residues were incorporated into the new composite Polyester/Fiberglass for hot compression mold and compared tribological to composites with filler CaCO3, generally used as filler, targeting a partial replacement of CaCO3 by such waste. The composites were characterized by thermal analysis (TGA, DSC and DMA), by the surface integrity (roughness determination, contact angle and surface energy), mechanical properties (hardness) and tribological tests (wear and coefficient of dynamic friction) in order to evaluate the effect of loads and characterize these materials for applications that can take, in the tribological point of view since waste Polyester + fiberglass has great potential for replacement of CaCO3
Resumo:
Space Science was built using a composite made of plaster, EPS, shredded tires, cement and water. Studies were conducted to thermal and mechanical resistance. Inside the mold EPS plates were placed in order to obtain a higher thermal resistance on the wall constructed, as well as to give it an end environmentally friendly in view of both the tire and the EPS occupy a large space in landfills and year need to be degraded when released into the environment. Compression tests were performed according to ABNT blocks to seal, measurements of the temperature variation in the external and internal walls using a laser thermometer and check the temperature of the indoor environment using a thermocouple attached to a digital thermometer. The experiments demonstrated the heat provided by the composite values from the temperature difference between the internal and external surfaces on the walls, reaching levels of 12.4 ° C and room temperature in the interior space of the Science of 33.3 ° C, remaining within the zone thermal comfort for hot climate countries. It was also demonstrated the proper mechanical strength of such a composite for sealing walls. The proposed use of the composite can contribute to reducing the extreme housing shortage in our country, producing popular homes at low cost and with little time to work
Resumo:
The proposed design provides a solar furnace alternative, box-like, low-cost operation to be used in cooking, comprising three scrap tires to make the recycling thereof. The tires were coupled to each other, forming an enclosure, which stood on its bottom covered by a parable multiple mirrors made from a urupema (sieve indigenous) and the inner sides of the oven aluminum sheet painted black, obtained from beer cans, thus being made to obtain the increase in the concentration of solar radiation incident on the inside of the prototype studied. Two tires were attached, leaving an air layer between them, with the function of thermal insulation. The third tire aimed to support the other two and thermally insulate the bottom of the oven. Externally was placed a metal frame with flat mirrors to reflect the incident rays into the oven, having a mobility to correct the apparent motion of the sun. Its primary feature is the viability of clean, renewable energy to society by tackling the ecological damage caused by the large-scale use of wood for cooking food. The tests show that the furnace reached the maximum temperature of 123.8 °C and baking various foods such as pizza, bun, and other lasagne in an average time 50 minutes. Proves the feasibility of using the oven. Presenting still able to improve their performance with the addition of new materials, equipment and techniques
Resumo:
The scarcity of farmland, reducing the supply of irrigation water and lack of technologies for conservation, makes the globalized world facing serious difficulties in the production of food for its population. The most viable outlet for this dilemma is the dissemination of technologies, economically viable and available to the whole population, for dehydration of perishable foods produced. This paper presents a solar dryer of direct exposure to the production of dried fruit, made from recycled polyethylene drum of 200 liters, used for storing water or trash. The drum was sectioned in half in its longitudinal axis and has its halves together forming a trough-like structure. It describes the processes of construction and assembly of solar dryer proposed, whose main characteristic its low cost, and was designed for use by people with low income, for processing fruits widely available in our region (mango, banana, guava, cashew, pineapple, tomato and others) in dried fruit and flour, contributing significantly to increase the life of these foods. The nuts and flours can be used for own consumption and for marketing jobs and income generation. Tests were conducted to diagnose the feasibility of using solar dryer for the various types of tropical fruits. Were also compared parameters such as drying times and thermal efficiency obtained with the prototype found in the specialized literature in food dehydration. The drying times in the dryer were obtained competitive with those obtained in other models of dryers LMHES developed
Resumo:
Thermal insulation is used to protect the heated or cooled surfaces by the low thermal conductivity materials. The rigid ricin polyurethane foams (PURM) are used for thermal insulation and depend on the type and concentration of blowing agent. Obtaining PURM occurs by the use of polyol, silicone, catalyst and blowing agent are pre -mixed, reacting with the isocyanate. The glass is reusable, returnable and recyclable heat insulating material, whose time of heat dissipation determines the degree of relaxation of its structure; and viscosity determines the conditions for fusion, operating temperatures, annealing, etc. The production of PURM composites with waste glass powder (PV) represents economical and renewable actions of manufacturing of thermal insulating materials. Based on these aspects, the study aimed to produce and characterize the PURM composites with PV, whose the mass percentages were 5, 10, 20, 30, 40 and 50 wt%. PURM was obtained commercially, while the PV was recycled from the tailings of the stoning process of a glassmaking; when the refining process was applied to obtain micrometer particles. The PURM + PV composites were studied taking into account the standard sample of pure PURM and the influence of the percentage of PV in this PURM matrix. The results of the chemical, physical and morphological characterization were discussed taking into account the difference in the microstructural morphology of the PURM+PV composites and the pure PURM, as well the results of the physicochemical, mechanical e thermophysical tests by values obtained of density, hardness, compressive strength, specific heat, thermal conductivity and diffusivity. In general, the structure of pure PURM showed large, elongated and regular pores, while PURM+PV composites showed irregular, small and rounded pores with shapeless cells. This may have contributed to reducing their mechanical strength, especially for PURM - PV50. The hardness and density were found to have a proportional relationship with the PV content on PURM matrix. The specific heat, thermal diffusivity and thermal conductivity showed proportional relationship to each other. So, this has been realized that the increasing the PV content on PURM matrix resulted in the rise of diffusivity and thermal conductivity and the decrease of the specific heat. However, the values obtained by the PURM composites were similar the values of pure PURM, mainly the PURM-PV5 and PURM-PV10. Therefore, these composites can be applied like thermal insulator; furthermore, their use could reduce the production costs and to preserve the environment
Resumo:
With the current growth in consumption of industrialized products and the resulting increase in garbage production, their adequate disposal has become one of the greatest challenges of modern society. The use of industrial solid residues as fillers in composite materials is an idea that emerges aiming at investigating alternatives for reusing these residues, and, at the same time, developing materials with superior properties. In this work, the influence of the addition of sand, diatomite, and industrial residues of polyester and EVA (ethylene vinyl acetate), on the mechanical properties of polymer matrix composites, was studied. The main objective was to evaluate the mechanical properties of the materials with the addition of recycled residue fillers, and compare to those of the pure polyester resin. Composite specimens were fabricated and tested for the evaluation of the flexural properties and Charpy impact resistance. After the mechanical tests, the fracture surface of the specimens was analyzed by scanning electron microscopy (SEM). The results indicate that some of the composites with fillers presented greater Young s modulus than the pure resin; in particular composites made with sand and diatomite, where the increase in modulus was about 168 %. The composites with polyester and EVA presented Young s modulus lower than the resin. Both strength and maximum strain were reduced when fillers were added. The impact resistance was reduced in all composites with fillers when compared to the pure resin, with the exception of the composites with EVA, where an increase of about 6 % was observed. Based on the mechanical tests, microscopy analyses and the compatibility of fillers with the polyester resin, the use of industrial solid residues in composites may be viable, considering that for each type of filler there will be a specific application
Resumo:
O objetivo do experimento foi avaliar o melhor sentido de caminhamento de um pulverizador de barras, montado em três pontos no trator, nas culturas de soja e de feijão. As pulverizações foram orientadas no sentido longitudinal às linhas de semeadura, transversal às linhas de semeadura e no mesmo sentido das linhas de semeadura com os pneus percorrendo locais pré-definidos onde não houve a distribuição de sementes (tramlines). Foram avaliados os componentes de produtividade. Pelos resultados, pode-se observar que não houve diferença significativa quanto aos componentes de produtividade avaliados na cultura da soja quando se variou o sentido da pulverização. Na cultura do feijoeiro, a pulverização no sentido longitudinal apresentou maior produtividade.
Resumo:
A technological alternative for the correct disposal of tires is the use in the construction of embankment with soil and shredded tires. The use of waste tires in tropical soils requires prior knowledge of the properties and limitations of these materials. In this work, the results of an experimental program was devised to characterize the behavior of mixtures of waste tires and a lateritic soil. The residue used in this study is classified as tire buffings with an average size of 1.4 mm. The laboratory program included testing of particle size analysis, Atterberg limits, compaction, direct shear tests, permeability and confined compression tests with pure soil, pure tire and the mixtures. Proportions of 0% (pure soil), 10%, 20%, 40%, 50 % and 100% (pure tire) by weight were used. For the confining stress levels used in the study, the presence of tire residue provided a considerable increase in shear strength of the mixture. The maximum shear strength was obtained for a residue content of 40% by weight. Permeability tests on samples of waste under a confining stress of 100 kPa showed that the permeability increases significantly with increasing residue content until a residue content of 20%. The increase in permeability after that value showed to be negligible. Confined compression tests showed that the soil mixed with tire residue becomes more compressible than the pure soil. The secant constrained modulus (Msec) for the same vertical stress decreases with increasing percentage of residue.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Analysis of experimental interlocking blocks of concrete with addition of residues of process the tires retreading production. With the population growth in recent years, industry in general has adjusted itself to resulting demand. the industry of tire retreading generates residues that have been discarded without any control. this adds to environmental pollution and promotes the proliferation of vectors harmful to health, aiming to find an application for this type of residues, this study presents experimental results to interlocking concrete block pavements, with addition of residues tires, interlocking blocks were built up and we determined, through laboratory tests, the need to set the mark that provide greater return regarding analyzed characteristics, there are four types of dosage of concrete with residues tires. We accomplished tests of compression strength, water absorption and resistance to impact. Through the preliminary results, we verified that are satisfactory, confirming the possibility of applying this type of interlocking block in environments with low demand, which would bring the economy of natural sources of aggregates, beyond ecological benefits through the reuse of residues from retreading of tires.
Resumo:
Reusing scrap tires has become a worldwide challenge, especially due to the great difficulty in finding ecologically and economically feasible ways to dispose of them. This has led to the creation of specific programs and legislation for reusing scrap tires. Research has shown that a certain percentage of scrap tire rubber can be added to asphalt compositions, and this has become a worldwide practice. This paper describes the properties of four asphalt compositions modified with scrap tire rubber (STR) prepared in the laboratory. These properties are then compared with those of asphalt modified with styrene butadiene styrene (SBS), a synthetic polymer and one of the most common modifiers, to verify the feasibility of using scrap tire rubber as a substitute for SBS. The scope of this study does not include an analysis of how STR affects end-of-life asphalt. The main findings indicate that STR is a potential substitute of SBS in paving material, and although it does not meet some of the standard specifications when compared with SBS, these issues can be overcome by proper care during storage and transportation. The substitution of SBS by STR also showed the potential for about 10% in expenditure savings. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The World Trade Organization (WTO) was established in 1994 as a result of the Uruguay Round, and has as its principal aim advocate for the maintenance of free trade between nations. The preamble of its Constitutive Agreement specifically cites as an institution the goal of achieving sustainable development and the pursuit of protecting and preserving the environment, bringing into the sphere of world trade the idea that concern for the environmental cause is not restricted only the group of environmentalists, but rather has entered the economic landscape in a way not only ideological, but also pragmatic. The General Agreement on Tariffs and Trade (GATT) 1947, part of the GATT 1994, contains a device that allows the adoption of trade restrictive measures, provided that such measures aimed at protecting the environment - Article XX. The Settlement Body (DSB) is part of the WTO and acts in dissolving disputes between the countries motivated by trade. It examines two cases where countries have imposed restrictive trade measures with environmental justification. The first case was closed in 1996, with award of damages given to Brazil, on the breakdown of U.S. environmental legislation imposed on imported gasoline from Brazil - and the second, begun in 2005 and closed in 2007, coming out victorious again Brazil is on the import ban on retreaded tires to Brazil. The objective is to answer the question: how the environment is treated in the midst of trade discussions - which is aimed at its protection or its use with economic objectives in disguise? For the preparation of this work, extensive documentary research was undertaken with the virtual site of the WTO to review the entire production of legal cases and subsequent analysis of the key issue for the work, and literature of authors who have studied the tense relationship between trade international environment. The first case, it could be seen that the political movement performed by the U.S. with the aim of achieving acceptable standards of air quality was an institutional effort to ensure the quality of air, and thus would be inappropriate to say that the regulation of gasoline was merely a disguised trade barrier.However, a careful analysis of the implementation and operation of gasoline regulation may reveal intentions disguised trade and U.S. environmental argument did not hold. The weight of this environment was relegated, since there were clearly outside interests to the environmental cause. The second case, it was realized that, despite clear attempts by the EC to promote ecological dumping, send when brought to Brazil, supposedly a country with weaker environmental structure on surveillance, a residue that, pursuant to internal policies, as could not be sent to their own landfills, the Brazilian discourse remained focused on the environmental cause, and this sort there was the existence of disguised trade barriers, but of importance, at least a priori, the discussion of foreign forces on the environment environment because there is no way to legally justify the reversal of the total understanding of the first judging body, the sight of all the arguments presented by Brazil and the nonsubmission of new facts upon appeal. Still, quite heartening to reflect on the role of trade liberalization on the environment in general, because, while they do not reach a definitive conclusion will reveal positions in both directions, both for and against, the that only adds to the discussions and makes this a very fertile topic for future research
Resumo:
This study aims to compare the thermal performance of tiles made from recycled material (waste packaging cardboard with aluminized film) with the tiles of fiber and bitumen, fiber cement and red ceramic with the aim of verifying the suitability of tile to be used in hot and humid climate of low latitude. The samples were selected according to the availability from Natal RN market, as they are sold to the consumers. The methodology was based on studies that used experimental apparatus composed of thermal chambers heated by banks of incandescent bulbs, to analyze the thermal performance of materials. The tiles in the study were submitted to analysis of thermal performance, thermophysical properties and absorptance, using chambers of thermal performance, measuring the thermophysical properties and portable spectrometer, respectively. Comparative analysis of thermal performance between two samples of the recycled material with dimple sizes and different amounts of aluminum were made, in order to verify, if these characteristics had some interference on the thermal performance of them; the results showed no significant performance differences between the samples. The data obtained in chambers of thermal performance and confirmed by statistical analysis, showed, that the tile of recycled material have similar thermal performance to the tile of fiber cement. In addition to these tests was carried out the automatic monitoring of a building covered with tiles of recycled material, to verify its thermal performance in a real situation. The results showed that recycled shingles must be used with technical criteria similar to those used for fiber cement tiles, with regard to the heat gain into the building. Within these criteria should be taken into account local characteristics, especially in regions with hot and humid climate, and its use must be associated, according to the literature, to elements of thermal insulation and use of passive techniques such as vented attics, ceilings and right foot higher