947 resultados para Rayleigh-Benard Convection
Resumo:
The paper presents a new theory for modeling flow in anisotropic, viscous rock. This theory has originally been developed for the simulation of large deformation processes including folding and kinking in multi-layered visco-elastic rock. The orientation of slip planes in the context of crystallographic slip is determined by the normal vector, the so-called director of these surfaces. The model is applied to simulate anisotropic natural mantle convection. We compare the evolution of the director and approximately steady states of isotropic and anisotropic convection. The isotropic case has a simple steady state solution, whereas the orthotropic convection model produces a continuously evolving patterning in tile core of the convection cell which makes only a near-steady condition possible, in which the thermal boundary layer appears to be well aligned with the flow and hence as observed in seismic tomomgraphy strong anistropic.
Resumo:
In this paper we examine the equilibrium states of finite amplitude flow in a horizontal fluid layer with differential heating between the two rigid boundaries. The solutions to the Navier-Stokes equations are obtained by means of a perturbation method for evaluating the Landau constants and through a Newton-Raphson iterative method that results from the Fourier expansion of the solutions that bifurcate above the linear stability threshold of infinitesimal disturbances. The results obtained from these two different methods of evaluating the convective flow are compared in the neighborhood of the critical Rayleigh number. We find that for small Prandtl numbers the discrepancy of the two methods is noticeable. © 2009 The Physical Society of Japan.
Resumo:
This paper reports the Rayleigh scattering effects in ultra-long Raman fibre laser. It has been found that in a long fibre cavity (-100 km) the distributed feedback due to Rayleigh back scattering at propagation of light between fibre Bragg grating reflectors may be comparable with the lumped feedback provided by the FBG itself. As a result, Raman lasing in the fibre span limited by lumped (FBG) reflector at one side only appears possible due to significant reflection from the RS-based "random" distributed mirror at the other side. Thus, it concludes that a distributed Rayleigh scattering "random" mirror can form a cavity together with a single FBG spliced to the opposite cavity end.
Resumo:
We present experimental demonstration of a 200-km-long, dual-wavelength Raman laser utilizing two slightly different-wavelength fiber Bragg gratings, one on each side of the fiber span. The obtained results clearly prove the generation of two independent Raman lasers with a distributed “random” Rayleigh scattering mirror forming a cavity together with each of the individual fiber Bragg grating reflectors.
Resumo:
A frequency-modulated continuous-wave technique is used to detect the presence of frequency shifts in the Rayleigh-backscattered light in a single-mode optical fiber as a result of a changing temperature. The system is able to detect a rate of temperature change of 0.014 K/s, when a 20-cm length of fiber is heated. The system is also able to demonstrate a spatial resolution of better than 15 cm.
Resumo:
We demonstrate a novel Rayleigh interferometric noise mitigation scheme for applications in carrier-distributed dense wavelength division multiplexed (DWDM) passive optical networks at 10 Gbit/s using carrier suppressed subcarrier-amplitude modulated phase shift keying modulation. The required optical signal to Rayleigh noise ratio is reduced by 12 dB, while achieving excellent tolerance to dispersion, subcarrier frequency and drive amplitude variations.
Resumo:
The diffusion and convection of a solute suspended in a fluid across porous membranes are known to be reduced compared to those in a bulk solution, owing to the fluid mechanical interaction between the solute and the pore wall as well as steric restriction. If the solute and the pore wall are electrically charged, the electrostatic interaction between them could affect the hindrance to diffusion and convection. In this study, the transport of charged spherical solutes through charged circular cylindrical pores filled with an electrolyte solution containing small ions was studied numerically by using a fluid mechanical and electrostatic model. Based on a mean field theory, the electrostatic interaction energy between the solute and the pore wall was estimated from the Poisson-Boltzmann equation, and the charge effect on the solute transport was examined for the solute and pore wall of like charge. The results were compared with those obtained from the linearized form of the Poisson-Boltzmann equation, i.e.the Debye-Hückel equation. © 2012 The Japan Society of Fluid Mechanics and IOP Publishing Ltd.
Resumo:
The transport of a spherical solute through a long circular cylindrical pore filled with an electrolyte solution is studied numerically, in the presence of constant surface charge on the solute and the pore wall. Fluid dynamic analyses were carried out to calculate the flow field around the solute in the pore to evaluate the drag coefficients exerted on the solute. Electrical potentials around the solute in the electrolyte solution were computed based on a mean-field theory to provide the interaction energy between the charged solute and the pore wall. Combining the results of the fluid dynamic and electrostatic analyses, we estimated the rate of the diffusive and convective transport of the solute across the pore. Although the present estimates of the drag coefficients on the solute suggest more than 10% difference from existing studies, depending on the radius ratio of the solute relative to the pore and the radial position of the solute center in the pore, this difference leads to a minor effect on the hindrance factors. It was found that even at rather large ion concentrations, the repulsive electrostatic interaction between the charged solute and the pore wall of like charge could significantly reduce the transport rate of the solute.
Resumo:
Internally heated fluids are found across the nuclear fuel cycle. In certain situations the motion of the fluid is driven by the decay heat (i.e. corium melt pools in severe accidents, the shutdown of liquid metal reactors, molten salt and the passive control of light water reactors) as well as normal operation (i.e. intermediate waste storage and generation IV reactor designs). This can in the long-term affect reactor vessel integrity or lead to localized hot spots and accumulation of solid wastes that may prompt local increases in activity. Two approaches to the modeling of internally heated convection are presented here. These are based on numerical analysis using codes developed in-house and simulations using widely available computational fluid dynamics solvers. Open and closed fluid layers at around the transition between conduction and convection of various aspect ratios are considered. We determine optimum domain aspect ratio (1:7:7 up to 1:24:24 for open systems and 5:5:1, 1:10:10 and 1:20:20 for closed systems), mesh resolutions and turbulence models required to accurately and efficiently capture the convection structures that evolve when perturbing the conductive state of the fluid layer. Note that the open and closed fluid layers we study here are bounded by a conducting surface over an insulating surface. Conclusions will be drawn on the influence of the periodic boundary conditions on the flow patterns observed. We have also examined the stability of the nonlinear solutions that we found with the aim of identifying the bifurcation sequence of these solutions en route to turbulence.
Resumo:
The range of existence and the properties of two essentially different chaotic attractors found in a model of nonlinear convection-driven dynamos in rotating spherical shells are investigated. A hysteretic transition between these attractors is established as a function of the rotation parameter t. The width of the basins of attraction is also estimated. © 2012 The Royal Swedish Academy of Sciences.