932 resultados para Random-set theory
Resumo:
Oscillations between high and low values of the membrane potential (UP and DOWN states respectively) are an ubiquitous feature of cortical neurons during slow wave sleep and anesthesia. Nevertheless, a surprisingly small number of quantitative studies have been conducted only that deal with this phenomenon’s implications for computation. Here we present a novel theory that explains on a detailed mathematical level the computational benefits of UP states. The theory is based on random sampling by means of interspike intervals (ISIs) of the exponential integrate and fire (EIF) model neuron, such that each spike is considered a sample, whose analog value corresponds to the spike’s preceding ISI. As we show, the EIF’s exponential sodium current, that kicks in when balancing a noisy membrane potential around values close to the firing threshold, leads to a particularly simple, approximative relationship between the neuron’s ISI distribution and input current. Approximation quality depends on the frequency spectrum of the current and is improved upon increasing the voltage baseline towards threshold. Thus, the conceptually simpler leaky integrate and fire neuron that is missing such an additional current boost performs consistently worse than the EIF and does not improve when voltage baseline is increased. For the EIF in contrast, the presented mechanism is particularly effective in the high-conductance regime, which is a hallmark feature of UP-states. Our theoretical results are confirmed by accompanying simulations, which were conducted for input currents of varying spectral composition. Moreover, we provide analytical estimations of the range of ISI distributions the EIF neuron can sample from at a given approximation level. Such samples may be considered by any algorithmic procedure that is based on random sampling, such as Markov Chain Monte Carlo or message-passing methods. Finally, we explain how spike-based random sampling relates to existing computational theories about UP states during slow wave sleep and present possible extensions of the model in the context of spike-frequency adaptation.
On degeneracy and invariances of random fields paths with applications in Gaussian process modelling
Resumo:
We study pathwise invariances and degeneracies of random fields with motivating applications in Gaussian process modelling. The key idea is that a number of structural properties one may wish to impose a priori on functions boil down to degeneracy properties under well-chosen linear operators. We first show in a second order set-up that almost sure degeneracy of random field paths under some class of linear operators defined in terms of signed measures can be controlled through the two first moments. A special focus is then put on the Gaussian case, where these results are revisited and extended to further linear operators thanks to state-of-the-art representations. Several degeneracy properties are tackled, including random fields with symmetric paths, centred paths, harmonic paths, or sparse paths. The proposed approach delivers a number of promising results and perspectives in Gaussian process modelling. In a first numerical experiment, it is shown that dedicated kernels can be used to infer an axis of symmetry. Our second numerical experiment deals with conditional simulations of a solution to the heat equation, and it is found that adapted kernels notably enable improved predictions of non-linear functionals of the field such as its maximum.
Resumo:
Background: ASSIP is a manualized brief therapy based on a model of suicide as goal-directed action, aimed at establishing a therapeutic alliance in a patient-oriented, collaborative approach. The main goals of the three-session program ASSIP are for patients to understand, from an observer’s position, patterns leading to a suicidal crisis, recognize triggers and warning signs, and to establish individual safety strategies for future suicidal crises. An ongoing therapeutic support is provided with regular letters over 24 months. Method: The study was conducted in a naturalistic setting. 120 Patients were randomly assigned to an intervention group (60 participants) treated with ASSIP combined with follow-up contact through letters, and a control group (60 participants) receiving a single session of clinical assessment. Both groups had treatment as usual. Patients completed a set of psychosocial and clinical questionnaires every six months over a period of 24 months. Results: In the ASSIP group 5 patients made a total of 5 reattempts, compared to 15 patients with 41 reattempts in the control group. The survival analysis yielded a significant difference with a Wald Chi2 of .000003. The ASSIP group had significantly lower suicidal ideation and fewer days of inpatient treatment compared to the control group. Higher scores in the Penn Helping Alliance Questionnaire were associated with lower suicidal ideation during follow-up. Conclusions: ASSIP is a highly effective brief therapy for patients with recent suicide attempts. Forming a strong therapeutic alliance is considered to be a major factor for outcome. ASSIP can be used with minimal training by experienced therapists. An English version of the manual will be published in May 2015.
Resumo:
Theory on plant succession predicts a temporal increase in the complexity of spatial community structure and of competitive interactions: initially random occurrences of early colonising species shift towards spatially and competitively structured plant associations in later successional stages. Here we use long-term data on early plant succession in a German post mining area to disentangle the importance of random colonisation, habitat filtering, and competition on the temporal and spatial development of plant community structure. We used species co-occurrence analysis and a recently developed method for assessing competitive strength and hierarchies (transitive versus intransitive competitive orders) in multispecies communities. We found that species turnover decreased through time within interaction neighbourhoods, but increased through time outside interaction neighbourhoods. Successional change did not lead to modular community structure. After accounting for species richness effects, the strength of competitive interactions and the proportion of transitive competitive hierarchies increased through time. Although effects of habitat filtering were weak, random colonization and subsequent competitive interactions had strong effects on community structure. Because competitive strength and transitivity were poorly correlated with soil characteristics, there was little evidence for context dependent competitive strength associated with intransitive competitive hierarchies.
Resumo:
Redemption laws give mortgagors the right to redeem their property following default for a statutorily set period of time. This paper develops a theory that explains these laws as a means of protecting landowners against the loss of non-transferable values associated with their land. A longer redemption period reduces the risk that this value will be lost but also increases the likelihood of default. The optimal redemption period balances these effects. Empirical analysis of cross-state data from the early twentieth century suggests that these factors, in combination with political considerations, explain the existence and length of redemption laws.
Resumo:
Redemption laws give mortgagors the right to redeem their property following default for a statutorily set period of time. This paper develops a theory that explains these laws as a means of protecting landowners against the loss of nontransferable values associated with their land. A longer redemption period reduces the risk that this value will be lost but also increases the likelihood of default. The optimal redemption period balances these effects. Empirical analysis of cross-state data from the early twentieth century suggests that these factors, in combination with political considerations, explain the existence and length of redemption laws.
Resumo:
Random Forests™ is reported to be one of the most accurate classification algorithms in complex data analysis. It shows excellent performance even when most predictors are noisy and the number of variables is much larger than the number of observations. In this thesis Random Forests was applied to a large-scale lung cancer case-control study. A novel way of automatically selecting prognostic factors was proposed. Also, synthetic positive control was used to validate Random Forests method. Throughout this study we showed that Random Forests can deal with large number of weak input variables without overfitting. It can account for non-additive interactions between these input variables. Random Forests can also be used for variable selection without being adversely affected by collinearities. ^ Random Forests can deal with the large-scale data sets without rigorous data preprocessing. It has robust variable importance ranking measure. Proposed is a novel variable selection method in context of Random Forests that uses the data noise level as the cut-off value to determine the subset of the important predictors. This new approach enhanced the ability of the Random Forests algorithm to automatically identify important predictors for complex data. The cut-off value can also be adjusted based on the results of the synthetic positive control experiments. ^ When the data set had high variables to observations ratio, Random Forests complemented the established logistic regression. This study suggested that Random Forests is recommended for such high dimensionality data. One can use Random Forests to select the important variables and then use logistic regression or Random Forests itself to estimate the effect size of the predictors and to classify new observations. ^ We also found that the mean decrease of accuracy is a more reliable variable ranking measurement than mean decrease of Gini. ^
Resumo:
Predicting species potential and future distribution has become a relevant tool in biodiversity monitoring and conservation. In this data article we present the suitability map of a virtual species generated based on two bioclimatic variables, and a dataset containing more than 700.000 random observations at the extent of Europe. The dataset includes spatial attributes such as, distance to roads, protected areas, country codes, and the habitat suitability of two spatially clustered species (grassland and forest species) and a wide spread species.
Resumo:
A land classification method was designed for the Community of Madrid (CM), which has lands suitable for either agriculture use or natural spaces. The process started from an extensive previous CM study that contains sets of land attributes with data for 122 types and a minimum-requirements method providing a land quality classification (SQ) for each land. Borrowing some tools from Operations Research (OR) and from Decision Science, that SQ has been complemented by an additive valuation method that involves a more restricted set of 13 representative attributes analysed using Attribute Valuation Functions to obtain a quality index, QI, and by an original composite method that uses a fuzzy set procedure to obtain a combined quality index, CQI, that contains relevant information from both the SQ and the QI methods.
Resumo:
The authors are from UPM and are relatively grouped, and all have intervened in different academic or real cases on the subject, at different times as being of different age. With precedent from E. Torroja and A. Páez in Madrid Spain Safety Probabilistic models for concrete about 1957, now in ICOSSAR conferences, author J.M. Antón involved since autumn 1967 for euro-steel construction in CECM produced a math model for independent load superposition reductions, and using it a load coefficient pattern for codes in Rome Feb. 1969, practically adopted for European constructions, giving in JCSS Lisbon Feb. 1974 suggestion of union for concrete-steel-al.. That model uses model for loads like Gumbel type I, for 50 years for one type of load, reduced to 1 year to be added to other independent loads, the sum set in Gumbel theories to 50 years return period, there are parallel models. A complete reliability system was produced, including non linear effects as from buckling, phenomena considered somehow in actual Construction Eurocodes produced from Model Codes. The system was considered by author in CEB in presence of Hydraulic effects from rivers, floods, sea, in reference with actual practice. When redacting a Road Drainage Norm in MOPU Spain an optimization model was realized by authors giving a way to determine the figure of Return Period, 10 to 50 years, for the cases of hydraulic flows to be considered in road drainage. Satisfactory examples were a stream in SE of Spain with Gumbel Type I model and a paper of Ven Te Chow with Mississippi in Keokuk using Gumbel type II, and the model can be modernized with more varied extreme laws. In fact in the MOPU drainage norm the redacting commission acted also as expert to set a table of return periods for elements of road drainage, in fact as a multi-criteria complex decision system. These precedent ideas were used e.g. in wide Codes, indicated in symposia or meetings, but not published in journals in English, and a condensate of contributions of authors is presented. The authors are somehow involved in optimization for hydraulic and agro planning, and give modest hints of intended applications in presence of agro and environment planning as a selection of the criteria and utility functions involved in bayesian, multi-criteria or mixed decision systems. Modest consideration is made of changing in climate, and on the production and commercial systems, and on others as social and financial.
Resumo:
Abstract This work is focused on the problem of performing multi‐robot patrolling for infrastructure security applications in order to protect a known environment at critical facilities. Thus, given a set of robots and a set of points of interest, the patrolling task consists of constantly visiting these points at irregular time intervals for security purposes. Current existing solutions for these types of applications are predictable and inflexible. Moreover, most of the previous centralized and deterministic solutions and only few efforts have been made to integrate dynamic methods. Therefore, the development of new dynamic and decentralized collaborative approaches in order to solve the aforementioned problem by implementing learning models from Game Theory. The model selected in this work that includes belief‐based and reinforcement models as special cases is called Experience‐Weighted Attraction. The problem has been defined using concepts of Graph Theory to represent the environment in order to work with such Game Theory techniques. Finally, the proposed methods have been evaluated experimentally by using a patrolling simulator. The results obtained have been compared with previous available
Resumo:
The characteristics of the power-line communication (PLC) channel are difficult to model due to the heterogeneity of the networks and the lack of common wiring practices. To obtain the full variability of the PLC channel, random channel generators are of great importance for the design and testing of communication algorithms. In this respect, we propose a random channel generator that is based on the top-down approach. Basically, we describe the multipath propagation and the coupling effects with an analytical model. We introduce the variability into a restricted set of parameters and, finally, we fit the model to a set of measured channels. The proposed model enables a closed-form description of both the mean path-loss profile and the statistical correlation function of the channel frequency response. As an example of application, we apply the procedure to a set of in-home measured channels in the band 2-100 MHz whose statistics are available in the literature. The measured channels are divided into nine classes according to their channel capacity. We provide the parameters for the random generation of channels for all nine classes, and we show that the results are consistent with the experimental ones. Finally, we merge the classes to capture the entire heterogeneity of in-home PLC channels. In detail, we introduce the class occurrence probability, and we present a random channel generator that targets the ensemble of all nine classes. The statistics of the composite set of channels are also studied, and they are compared to the results of experimental measurement campaigns in the literature.
Resumo:
The SMS, Simultaneous Multiple Surfaces, design was born to Nonimaging Optics applications and is now being applied also to Imaging Optics. In this paper the wave aberration function of a selected SMS design is studied. It has been found the SMS aberrations can be analyzed with a little set of parameters, sometimes two. The connection of this model with the conventional aberration expansion is also presented. To verify these mathematical model two SMS design systems were raytraced and the data were analyzed with a classical statistical methods: the plot of discrepancies and the quadratic average error. Both the tests show very good agreement with the model for our systems.
Resumo:
This paper is based on the following postulates taken from a book recently published by this author (Sáez-Vacas, 1990(1)): a) technological innovation in a company is understood to be the process and set of changes that the company undergoes as a result of a specific type of technology; b) the incorporation of technology in the company does not necessarily result in innovation, modernization and progress; c) the very words "modernization" and "progress" are completely bereft of any meaning if isolated from the concept of complexity in its broadest sense, including the human factor. Turning to office technology in specific, the problem of managing office technology for business innovation purposes can be likened to the problem of managing third level complexity, following the guidelines of a three-level complexity model proposed by the author some years ago