972 resultados para Random processes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report numerical results for the phase diagram in the density-disorder plane of a hard-sphere system in the presence of quenched, random, pinning disorder. Local minima of a discretized version of the Ramakrishnan-Yussouff free energy functional are located numerically and their relative stability is studied as a function of the density and the strength of disorder. Regions in the phase diagram corresponding to liquid, glassy, and nearly crystalline states are mapped out, and the nature of the transitions is determined. The liquid to glass transition changes from first to second order as the strength of the disorder is increased. For weak disorder, the system undergoes a first-order crystallization transition as the density is increased. Beyond a critical value of the disorder strength, this transition is replaced by a continuous glass transition. Our numerical results are compared with those of analytical work on the same system. Implications of our results for the field-temperature phase diagram of type-II superconductors are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stochasticity of domain-wall (DW) motion in magnetic nanowires has been probed by measuring slow fluctuations, or noise, in electrical resistance at small magnetic fields. By controlled injection of DWs into isolated cylindrical nanowires of nickel, we have been able to track the motion of the DWs between the electrical leads by discrete steps in the resistance. Closer inspection of the time dependence of noise reveals a diffusive random walk of the DWs with a universal kinetic exponent. Our experiments outline a method with which electrical resistance is able to detect the kinetic state of the DWs inside the nanowires, which can be useful in DW-based memory designs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the relaxation of a degenerate two-level system interacting with a heat bath, assuming a random-matrix model for the system-bath interaction. For times larger than the duration of a collision and smaller than the Poincaré recurrence time, the survival probability of still finding the system at timet in the same state in which it was prepared att=0 is exactly calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given an n x n complex matrix A, let mu(A)(x, y) := 1/n vertical bar{1 <= i <= n, Re lambda(i) <= x, Im lambda(i) <= y}vertical bar be the empirical spectral distribution (ESD) of its eigenvalues lambda(i) is an element of C, i = l, ... , n. We consider the limiting distribution (both in probability and in the almost sure convergence sense) of the normalized ESD mu(1/root n An) of a random matrix A(n) = (a(ij))(1 <= i, j <= n), where the random variables a(ij) - E(a(ij)) are i.i.d. copies of a fixed random variable x with unit variance. We prove a universality principle for such ensembles, namely, that the limit distribution in question is independent of the actual choice of x. In particular, in order to compute this distribution, one can assume that x is real or complex Gaussian. As a related result, we show how laws for this ESD follow from laws for the singular value distribution of 1/root n A(n) - zI for complex z. As a corollary, we establish the circular law conjecture (both almost surely and in probability), which asserts that mu(1/root n An) converges to the uniform measure on the unit disc when the a(ij) have zero mean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Markov random fields (MRF) are popular in image processing applications to describe spatial dependencies between image units. Here, we take a look at the theory and the models of MRFs with an application to improve forest inventory estimates. Typically, autocorrelation between study units is a nuisance in statistical inference, but we take an advantage of the dependencies to smooth noisy measurements by borrowing information from the neighbouring units. We build a stochastic spatial model, which we estimate with a Markov chain Monte Carlo simulation method. The smooth values are validated against another data set increasing our confidence that the estimates are more accurate than the originals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique is developed to study random vibration of nonlinear systems. The method is based on the assumption that the joint probability density function of the response variables and input variables is Gaussian. It is shown that this method is more general than the statistical linearization technique in that it can handle non-Gaussian excitations and amplitude-limited responses. As an example a bilinear hysteretic system under white noise excitation is analyzed. The prediction of various response statistics by this technique is in good agreement with other available results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

First, the non-linear response of a gyrostabilized platform to a small constant input torque is analyzed in respect to the effect of the time delay (inherent or deliberately introduced) in the correction torque supplied by the servomotor, which itself may be non-linear to a certain extent. The equation of motion of the platform system is a third order nonlinear non-homogeneous differential equation. An approximate analytical method of solution of this equation is utilized. The value of the delay at which the platform response becomes unstable has been calculated by using this approximate analytical method. The procedure is illustrated by means of a numerical example. Second, the non-linear response of the platform to a random input has been obtained. The effects of several types of non-linearity on reducing the level of the mean square response have been investigated, by applying the technique of equivalent linearization and solving the resulting integral equations by using laguerre or Gaussian integration techniques. The mean square responses to white noise and band limited white noise, for various values of the non-linear parameter and for different types of non-linearity function, have been obtained. For positive values of the non-linear parameter the levels of the non-linear mean square responses to both white noise and band-limited white noise are low as compared to the linear mean square response. For negative values of the non-linear parameter the level of the non-linear mean square response at first increases slowly with increasing values of the non-linear parameter and then suddenly jumps to a high level, at a certain value of the non-linearity parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The k-colouring problem is to colour a given k-colourable graph with k colours. This problem is known to be NP-hard even for fixed k greater than or equal to 3. The best known polynomial time approximation algorithms require n(delta) (for a positive constant delta depending on k) colours to colour an arbitrary k-colourable n-vertex graph. The situation is entirely different if we look at the average performance of an algorithm rather than its worst-case performance. It is well known that a k-colourable graph drawn from certain classes of distributions can be ii-coloured almost surely in polynomial time. In this paper, we present further results in this direction. We consider k-colourable graphs drawn from the random model in which each allowed edge is chosen independently with probability p(n) after initially partitioning the vertex set into ii colour classes. We present polynomial time algorithms of two different types. The first type of algorithm always runs in polynomial time and succeeds almost surely. Algorithms of this type have been proposed before, but our algorithms have provably exponentially small failure probabilities. The second type of algorithm always succeeds and has polynomial running time on average. Such algorithms are more useful and more difficult to obtain than the first type of algorithms. Our algorithms work as long as p(n) greater than or equal to n(-1+is an element of) where is an element of is a constant greater than 1/4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the spatial search problem on the two-dimensional square lattice, using the Dirac evolution operator discretized according to the staggered lattice fermion formalism. d = 2 is the critical dimension for the spatial search problem, where infrared divergence of the evolution operator leads to logarithmic factors in the scaling behavior. As a result, the construction used in our accompanying article A. Patel and M. A. Rahaman, Phys. Rev. A 82, 032330 (2010)] provides an O(root N ln N) algorithm, which is not optimal. The scaling behavior can be improved to O(root N ln N) by cleverly controlling the massless Dirac evolution operator by an ancilla qubit, as proposed by Tulsi Phys. Rev. A 78, 012310 (2008)]. We reinterpret the ancilla control as introduction of an effective mass at the marked vertex, and optimize the proportionality constants of the scaling behavior of the algorithm by numerically tuning the parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reorganizing a dataset so that its hidden structure can be observed is useful in any data analysis task. For example, detecting a regularity in a dataset helps us to interpret the data, compress the data, and explain the processes behind the data. We study datasets that come in the form of binary matrices (tables with 0s and 1s). Our goal is to develop automatic methods that bring out certain patterns by permuting the rows and columns. We concentrate on the following patterns in binary matrices: consecutive-ones (C1P), simultaneous consecutive-ones (SC1P), nestedness, k-nestedness, and bandedness. These patterns reflect specific types of interplay and variation between the rows and columns, such as continuity and hierarchies. Furthermore, their combinatorial properties are interlinked, which helps us to develop the theory of binary matrices and efficient algorithms. Indeed, we can detect all these patterns in a binary matrix efficiently, that is, in polynomial time in the size of the matrix. Since real-world datasets often contain noise and errors, we rarely witness perfect patterns. Therefore we also need to assess how far an input matrix is from a pattern: we count the number of flips (from 0s to 1s or vice versa) needed to bring out the perfect pattern in the matrix. Unfortunately, for most patterns it is an NP-complete problem to find the minimum distance to a matrix that has the perfect pattern, which means that the existence of a polynomial-time algorithm is unlikely. To find patterns in datasets with noise, we need methods that are noise-tolerant and work in practical time with large datasets. The theory of binary matrices gives rise to robust heuristics that have good performance with synthetic data and discover easily interpretable structures in real-world datasets: dialectical variation in the spoken Finnish language, division of European locations by the hierarchies found in mammal occurrences, and co-occuring groups in network data. In addition to determining the distance from a dataset to a pattern, we need to determine whether the pattern is significant or a mere occurrence of a random chance. To this end, we use significance testing: we deem a dataset significant if it appears exceptional when compared to datasets generated from a certain null hypothesis. After detecting a significant pattern in a dataset, it is up to domain experts to interpret the results in the terms of the application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis is to examine migration of educated Dominicans in light of global processes. Current global developments have resulted in increasingly global movements of people, yet people tend to come from certain places in large numbers rather than others. At the same time, international migration is increasingly selective, which shows in the disproportional number of educated migrants. This study discovers individual and societal motivations that explain why young educated Dominicans decide to migrate and return. The theoretical framework of this thesis underlines that migration is a dynamic process rooted in other global developments. Migratory movements should be seen as a result of interacting macro- and microstructures, which are linked by a number of intermediate mechanisms, meso-structures. The way individuals perceive opportunity structures concretises the way global developments mediate to the micro-level. The case of the Dominican Republic shows that there is a diversity of local responses to the world system, as Dominicans have produced their own unique historical responses to global changes. The thesis explains that Dominican migration is importantly conditioned by socioeconomic and educational background. Migration is more accessible for the educated middle class, because of the availability of better resources. Educated migrants also seem less likely to rely on networks to organize their migrations. The role of networks in migration differs by socioeconomic background on the one hand, and by the specific connections each individual has to current and previous migrants on the other hand. The personal and cultural values of the migrant are also pivotal. The central argument of this thesis is that a veritable culture of migration has evolved in the Dominican Republic. The actual economic, political and social circumstances have led many Dominicans to believe that there are better opportunities elsewhere. The globalisation of certain expectations on the one hand, and the development of the specifically Dominican feeling of ‘externalism’ on the other, have for their part given rise to the Dominican culture of migration. The study also suggests that the current Dominican development model encourages migration. Besides global structures, local structures are found to ve pivotal in determining how global processes are materialised in a specific place. The research for this thesis was conducted by using qualitative methodology. The focus of this thesis was on thematic interviews that reveal the subject’s point of view and give a fuller understanding of migration and mobility of the educated. The data was mainly collected during a field research phase in Santo Domingo, the Dominican Republic in December 2009 and January 2010. The principal material consists of ten thematic interviews held with educated Dominican current or former migrants. Four expert interviews, relevant empirical data, theoretical literature and newspaper articles were also comprehensively used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let n points be placed independently in d-dimensional space according to the density f(x) = A(d)e(-lambda parallel to x parallel to alpha), lambda, alpha > 0, x is an element of R-d, d >= 2. Let d(n) be the longest edge length of the nearest-neighbor graph on these points. We show that (lambda(-1) log n)(1-1/alpha) d(n) - b(n) converges weakly to the Gumbel distribution, where b(n) similar to ((d - 1)/lambda alpha) log log n. We also prove the following strong law for the normalized nearest-neighbor distance (d) over tilde (n) = (lambda(-1) log n)(1-1/alpha) d(n)/log log n: (d - 1)/alpha lambda <= lim inf(n ->infinity) (d) over tilde (n) <= lim sup(n ->infinity) (d) over tilde (n) <= d/alpha lambda almost surely. Thus, the exponential rate of decay alpha = 1 is critical, in the sense that, for alpha > 1, d(n) -> 0, whereas, for alpha <= 1, d(n) -> infinity almost surely as n -> infinity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a continuation of the earlier work (Publ. Res. Inst. Math. Sci. 45 (2009) 745-785) to characterize unitary stationary independent increment Gaussian processes. The earlier assumption of uniform continuity is replaced by weak continuity and with technical assumptions on the domain of the generator, unitary equivalence of the process to the solution of an appropriate Hudson-Parthasarathy equation is proved.