936 resultados para ROTATING-DISK ELECTRODES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium-ion batteries provide high energy density while being compact and light-weight and are the most pervasive energy storage technology powering portable electronic devices such as smartphones, laptops, and tablet PCs. Considerable efforts have been made to develop new electrode materials with ever higher capacity, while being able to maintain long cycle life. A key challenge in those efforts has been characterizing and understanding these materials during battery operation. While it is generally accepted that the repeated strain/stress cycles play a role in long-term battery degradation, the detailed mechanisms creating these mechanical effects and the damage they create still remain unclear. Therefore, development of techniques which are capable of capturing in real time the microstructural changes and the associated stress during operation are crucial for unravelling lithium-ion battery degradation mechanisms and further improving lithium-ion battery performance. This dissertation presents the development of two microelectromechanical systems sensor platforms for in situ characterization of stress and microstructural changes in thin film lithium-ion battery electrodes, which can be leveraged as a characterization platform for advancing battery performance. First, a Fabry-Perot microelectromechanical systems sensor based in situ characterization platform is developed which allows simultaneous measurement of microstructural changes using Raman spectroscopy in parallel with qualitative stress changes via optical interferometry. Evolutions in the microstructure creating a Raman shift from 145 cm−1 to 154 cm−1 and stress in the various crystal phases in the LixV2O5 system are observed, including both reversible and irreversible phase transitions. Also, a unique way of controlling electrochemically-driven stress and stress gradient in lithium-ion battery electrodes is demonstrated using the Fabry-Perot microelectromechanical systems sensor integrated with an optical measurement setup. By stacking alternately stressed layers, the average stress in the stacked electrode is greatly reduced by 75% compared to an unmodified electrode. After 2,000 discharge-charge cycles, the stacked electrodes retain only 83% of their maximum capacity while unmodified electrodes retain 91%, illuminating the importance of the stress gradient within the electrode. Second, a buckled membrane microelectromechanical systems sensor is developed to enable in situ characterization of quantitative stress and microstructure evolutions in a V2O5 lithium-ion battery cathode by integrating atomic force microscopy and Raman spectroscopy. Using dual-mode measurements in the voltage range of the voltage range of 2.8V – 3.5V, both the induced stress (~ 40 MPa) and Raman intensity changes due to lithium cycling are observed. Upon lithium insertion, tensile stress in the V2O5 increases gradually until the α- to ε-phase and ε- to δ-phase transitions occur. The Raman intensity change at 148 cm−1 shows that the level of disorder increases during lithium insertion and progressively recovers the V2O5 lattice during lithium extraction. Results are in good agreement with the expected mechanical behavior and disorder change in V2O5, highlighting the potential of microelectromechanical systems as enabling tools for advanced scientific investigations. The work presented here will be eventually utilized for optimization of thin film battery electrode performance by achieving fundamental understanding of how stress and microstructural changes are correlated, which will also provide valuable insight into a battery performance degradation mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slender rotating structures are used in many mechanical systems. These structures can suffer from undesired vibrations that can affect the components and safety of a system. Furthermore, since some these structures can operate in a harsh environment, installation and operation of sensors that are needed for closed-loop and collocated control schemes may not be feasible. Hence, the need for an open-loop non-collocated scheme for control of the dynamics of these structures. In this work, the effects of drive speed modulation on the dynamics of slender rotating structures are studied. Slender rotating structures are a type of mechanical rotating structures, whose length to diameter ratio is large. For these structures, the torsion mode natural frequencies can be low. In particular, for isotropic structures, the first few torsion mode frequencies can be of the same order as the first few bending mode frequencies. These situations can be conducive for energy transfer amongst bending and torsion modes. Scenarios with torsional vibrations experienced by rotating structures with continuous rotor-stator contact occur in many rotating mechanical systems. Drill strings used in the oil and gas industry are an example of rotating structures whose torsional vibrations can be deleterious to the components of the drilling system. As a novel approach to mitigate undesired vibrations, the effects of adding a sinusoidal excitation to the rotation speed of a drill string are studied. A portion of the drill string located within a borewell is considered and this rotating structure has been modeled as an extended Jeffcott rotor and a sinusoidal excitation has been added to the drive speed of the rotor. After constructing a three-degree-of-freedom model to capture lateral and torsional motions, the equations of motions are reduced to a single differential equation governing torsional vibrations during continuous stator contact. An approximate solution has been obtained by making use of the Method of Direct Partition of Motions with the governing torsional equation of motion. The results showed that for a rotor undergoing forward or backward whirling, the addition of sinusoidal excitation to the drive speed can cause an increase in the equivalent torsional stiffness, smooth the discontinuous friction force at contact, and reduce the regions of negative slope in the friction coefficient variation with respect to speed. Experiments with a scaled drill string apparatus have also been conducted and the experimental results show good agreement with the numerical results obtained from the developed models. These findings suggest that the extended Jeffcott rotordynamics model can be useful for studies of rotor dynamics in situations with continuous rotor-stator contact. Furthermore, the results obtained suggest that the drive speed modulation scheme can have value for attenuating drill-string vibrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2015 Silveira et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The direct CO2 electrochemical reduction on model platinum single crystal electrodes Pt(hkl) is studied in [C2mim+][NTf2−], a suitable room temperature ionic liquid (RTIL) medium due to its moderate viscosity, high CO2 solubility and conductivity. Single crystal electrodes represent the most convenient type of surface structured electrodes for studying the impact of RTIL ion adsorption on relevant electrocatalytic reactions, such as surface sensitive electrochemical CO2 reduction. We propose here based on cyclic voltammetry and in situ electrolysis measurements, for the first time, the formation of a stable adduct [C2mimH–CO2−] by a radical–radical coupling after the simultaneous reduction of CO2 and [C2mim+]. It means between the CO2 radical anion and the radical formed from the reduction of the cation [C2mim+] before forming the corresponding electrogenerated carbene. This is confirmed by the voltammetric study of a model imidazolium-2-carboxylate compound formed following the carbene pathway. The formation of that stable adduct [C2mimH–CO2−] blocks CO2 reduction after a single electron transfer and inhibits CO2 and imidazolium dimerization reactions. However, the electrochemical reduction of CO2 under those conditions provokes the electrochemical cathodic degradation of the imidazolium based RTIL. This important limitation in CO2 recycling by direct electrochemical reduction is overcome by adding a strong acid, [H+][NTf2−], into solution. Then, protons become preferentially adsorbed on the electrode surface by displacing the imidazolium cations and inhibiting their electrochemical reduction. This fact allows the surface sensitive electro-synthesis of HCOOH from CO2 reduction in [C2mim+][NTf2−], with Pt(110) being the most active electrode studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to investigate the potential for use of UAVs in underground mines and present a prototype design for a novel autorotating UAV platform for underground 3D data collection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analysed the use of microneedle-based electrodes to enhance electroporation of mouse testis with DNA vectors for production of transgenic mice. Different microneedle formats were developed and tested, and we ultimately used electrodes based on arrays of 500 μm tall microneedles. In a series of experiments involving injection of a DNA vector expressing Green Fluorescent Protein (GFP) and electroporation using microneedle electrodes and a commercially available voltage supply, we compared the performance of flat and microneedle electrodes by measuring GFP expression at various timepoints after electroporation. Our main finding, supported by both experimental and simulated data, is that needles significantly enhanced electroporation of testis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observations of jets in X-ray binaries show a correlation between radio power and black hole spin. This correlation, if confirmed, points toward the idea that relativistic jets may be powered by the rotational energy of black holes. In order to examine this further, we perform general relativistic radiative transport calculations on magnetically arrested accretion flows, which are known to produce powerful jets via the Blandfordâ Znajek (BZ) mechanism. We find that the X-ray and γ-ray emission strongly depend on spin and inclination angle. Surprisingly, the high-energy power does not show the same dependence on spin as the BZ jet power, but instead can be understood as a redshift effect. In particular, photons observed perpendicular to the spin axis suffer little net redshift until originating from close to the horizon. Such observers see deeper into the hot, dense, highly magnetized inner disk region. This effect is largest for rapidly rotating black holes due to a combination of frame dragging and decreasing horizon radius. While the X-ray emission is dominated by the near horizon region, the near-infrared (NIR) radiation originates at larger radii. Therefore, the ratio of X-ray to NIR power is an observational signature of black hole spin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manganese oxide is a promising active material for supercapacitors (SCs) with pseudocapacitance due to its high capacitance and its environmentally friendly character. This paper deals with the preparation of electrodes for supercapacitors consisting of manganese oxide supported onto graphite by electrophoretic deposition. Manganese oxide powders were characterized and dispersed in water by controlling the colloidal and rheological behavior in order to obtain stable suspensions. Optimized manganese oxide suspensions were deposited onto graphite electrodes by electrophoretic deposition. The deposited mass per unit area in the electrodes was optimized by controlling the applied current density and the deposition time. It has been demonstrated that the introduction of a binder helped to improve the adherence to graphite; otherwise the deposit thickness obtained by EPD is limited and no films can be obtained by simply dipping. These conditions allowed us to obtain more homogeneous deposits with higher specific energy than without binder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient energy storage holds the key to reducing waste energy and enabling the use of advanced handheld electronic devices, hydrid electric vehicles and residential energy storage. Recently, Li-ion batteries have been identified and employed as energy storage devices due to their high gravimetric and volumetric energy densities, in comparison to previous technologies. However, more research is required to enhance the efficiency of Li-ion batteries by discovering electrodes with larger electrochemical discharge capacities, while maintaining electrochemical stability. The aims of this study are to develop new microwave-assisted synthesis routes to nanostructured insertion cathodes, which harbor a greater affinity for lithium extraction and insertion than bulk materials. Subsequent to this, state-of-the-art synchrotron based techniques have been employed to understand structural and dynamic behaviour of nanostructured cathode materials during battery cell operation. In this study, microwave-assisted routes to a-LiFePO4, VO2(B), V3O7, H2V3O8 and V4O6(OH)4 have all been developed. Muon spin relaxation has shown that the presence of b-LiFePO4 has a detrimental effect on the lithium diffusion properties of a-LiFePO4, in agreement with first principles calculations. For the first time, a-LiFePO4 nanostructures have been obtained by employing a deep eutectic solvent reaction media showing near theoretical capacity (162 mAh g–1). Studies on VO2(B) have shown that the discharge capacity obtained is linked to the synthesis method. Electrochemical studies of H2V3O8 nanowires have shown outstanding discharge capacities (323 mAh g–1 at 100 mA g–1) and rate capability (180 mAh g–1 at 1 A g–1). The electrochemcial properties of V4O6(OH)4 have been investigated for the first time and show a promising discharge capacity of (180 mAh g–1). Lastly, in situ X-ray absorption spectroscopy has been utilised to track the evolution of the oxidation states in a-LiFePO4, VO2(B) and H2V3O8, and has shown these can all be observed dynamically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the limited resources of lithium, new chemistries based on the abundant and cheap sodium and even zinc have been proposed for the battery market. Prussian Blue Analogues (PBAs) are a class of compounds which have been explored for many different applications because of their intriguing electrochemical and magnetic properties. Manganese and titanium hexacyanoferrate (MnHCF and TiHCF) belong to the class of PBAs. In this work, MnHCF and TiHCF electrodes were synthetized, cycled with cyclic voltammetry (CV) in different setups and subsequently, the surfaces were characterized with X-ray Photoelectron Spectroscopy (XPS). The setups chosen for CVs were coin cell with zinc aqueous solution for the MnHCF series, three-electrode cell and symmetric coin cell with sodium aqueous solution for the TiHCF series. The electrodes were treated with different number of cycles to evaluate the chemical changes and alterations in oxidation states during cycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing market of electrical cars, portable electronics, photovoltaic systems..etc. requires the development of efficient, low-cost, and low environmental impact energy storage devices (ESDs) including batteries and supercapacitors.. Due to their extended charge-discharge cycle, high specific capacitance, and power capabilities supercapacitors are considered among the most attractive ESDs. Over the last decade, research and development in supercapacitor technology have accelerated: thousands of articles have been published in the literature describing the electrochemical properties of the electrode materials and electrolyte in addition to separators and current collectors. Carbon-based supercapacitor electrodes materials have gained increasing attention due to their high specific surface area, good electrical conductivity, and excellent stability in harsh environments, as well as other characteristics. Recently, there has been a surge of interest in activated carbon derived from low-cost abundant sources such as biomass for supercapacitor electrode materials. Also, particular attention was given to a major challenging issue concerning the substitution of organic solutions currently used as electrolytes due to their highest electrochemical stability window even though their high cost, toxicity, and flammability. In this regard, the main objective of this thesis is to investigate the performances of supercapacitors using low cost abundant safe, and low environmental impact materials for electrodes and electrolytes. Several prototypes were constructed and tested using natural resources through optimization of the preparation of appropriate carbon electrodes using agriculture by-products waste or coal (i.e. Argan shell or Anthracite from Jerrada). Such electrodes were tested using several electrolyte formulations (aqueous and water in salt electrolytes) beneficing their non-flammability, lower cost, and environmental impact; the characteristics that provide a promising opportunity to design safer, inexpensive, and environmentally friendly devices compared to organic electrolytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of multiple stellar populations in globular clusters (GCs) is now well accepted, however, very little is known regarding their origin. In this Thesis, I study how multiple populations formed and evolved by means of customized 3D numerical simulations, in light of the most recent data from spectroscopic and photometric observations of Local and high-redshift Universe. Numerical simulations are the perfect tool to interpret these data: hydrodynamic simulations are suited to study the early phases of GCs formation, to follow in great detail the gas behavior, while N-body codes permit tracing the stellar component. First, we study the formation of second-generation stars in a rotating massive GC. We assume that second-generation stars are formed out of asymptotic giant branch stars (AGBs) ejecta, diluted by external pristine gas. We find that, for low pristine gas density, stars mainly formed out of AGBs ejecta rotate faster than stars formed out of more diluted gas, in qualitative agreement with current observations. Then, assuming a similar setup, we explored whether Type Ia supernovae affect the second- generation star formation and their chemical composition. We show that the evolution depends on the density of the infalling gas, but, in general, an iron spread is developed, which may explain the spread observed in some massive GCs. Finally, we focused on the long-term evolution of a GC, composed of two populations and orbiting the Milky Way disk. We have derived that, for an extended first population and a low-mass second one, the cluster loses almost 98 percent of its initial first population mass and the GC mass can be as much as 20 times less after a Hubble time. Under these conditions, the derived fraction of second-population stars reproduces the observed value, which is one of the strongest constraints of GC mass loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis project, I present stationary models of rotating fluids with toroidal distributions that can be used to represent the active galactic nuclei (AGN) central obscurers, i.e. molecular tori (Combes et al., 2019), as well as geometrically thick accretion discs, like ADAF discs (Narayan and Yi, 1995) or Polish doughnuts (Abramowicz, 2005). In particular, I study stationary rotating systems with a more general baroclinic distribution (with a vertical gradient of the angular velocity), which are often more realistic and less studied, due to their complexity, than the barotropic ones (with cylindrical rotation), which are easier to construct. In the thesis, I compute analytically the main intrinsic and projected properties of the power-law tori based on the potential-density pairs of Ciotti and Bertin (2005). I study the density distribution and the resulting gravitational potential for different values of α, in the range 2 < α < 5. For the same models, I compute the surface density of the systems when seen face-on and edge-on. I then apply the stationary Euler equations to obtain rotational velocity and temperature distributions of the self-gravitating models in the absence of an external gravitational potential. In the thesis I also consider the power-law tori with the presence of a central black hole in addition to the gas self-gravity, and solving analytically the stationary Euler equations, I compute how the properties of the system are modified by the black hole and how they vary as a function of the black hole mass. Finally, applying the Solberg-Høiland criterion, I show that these baroclinic stationary models are linearly stable in the absence of the black hole. In the presence of the black hole I derive the analytical condition for stability, which depends on α and on the black hole mass. I also study the stability of the tori in the hypothesis that they are weakly magnetized, finding that they are always unstable to this instability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main research topic of the present master thesis consisted in the modification and electrochemical testing of inkjet printed graphene electrodes with a thin polymeric hydrogel layer made of cross-linked poly(N-isopropylacrylamide) (PNIPAAM) acting as a functional layer to fabricate selective sensors. The first experimental activities dealt with the synthesis of the polymeric hydrogel and the modification of the active surface of graphene sensors through photopolymerization. Simultaneous inkjet printing and photopolymerization of the hydrogel precursor inks onto graphene demonstrated to be the most effective and reproducible technique for the modification of the electrode with PNIPAAM. The electrochemical performance of the modified electrodes was tested through cyclic voltammetry. Voltammograms with standard redox couples with either positive, neutral or negative charges, suggested an electrostatic filtering effect by the hydrogel blocking negatively charged redox species in near neutral pH electrolyte solutions from reaching the electrode surface. PNIPAAM is a known thermo-responsive polymer, but the variation of temperature did not influence the filtering properties of the hydrogels for the redox couples studied. However, a variation of the filter capacity of the material was observed at pH 2 in which the PNIPAAM hydrogel, most likely in protonated form, became impermeable to positively charged redox species and permeable to negatively charged species. Finally, the filtering capacity of the electrodes modified with PNIPAAM was evaluated for the electrochemical determination of analytes in presence of negatively charge potential interferents, such as antioxidants like ascorbic acid. The outcome of the final experiments suggested the possibility to use the inkjet-printed PNIPAAM thin layer for electroanalytical applications as an electrostatic filter against interferents of opposite charges, typically present in complex matrices, such as food and beverages.