931 resultados para RNA 12S


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Patients suffering from cutaneous leishmaniasis (CL) caused by New World Leishmania (Viannia) species are at high risk of developing mucosal (ML) or disseminated cutaneous leishmaniasis (DCL). After the formation of a primary skin lesion at the site of the bite by a Leishmania-infected sand fly, the infection can disseminate to form secondary lesions. This metastatic phenotype causes significant morbidity and is often associated with a hyper-inflammatory immune response leading to the destruction of nasopharyngeal tissues in ML, and appearance of nodules or numerous ulcerated skin lesions in DCL. Recently, we connected this aggressive phenotype to the presence of Leishmania RNA virus (LRV) in strains of L. guyanensis, showing that LRV is responsible for elevated parasitaemia, destructive hyper-inflammation and an overall exacerbation of the disease. Further studies of this relationship and the distribution of LRVs in other Leishmania strains and species would benefit from improved methods of viral detection and quantitation, especially ones not dependent on prior knowledge of the viral sequence as LRVs show significant evolutionary divergence. METHODOLOGY/PRINCIPAL FINDINGS This study reports various techniques, among which, the use of an anti-dsRNA monoclonal antibody (J2) stands out for its specific and quantitative recognition of dsRNA in a sequence-independent fashion. Applications of J2 include immunofluorescence, ELISA and dot blot: techniques complementing an arsenal of other detection tools, such as nucleic acid purification and quantitative real-time-PCR. We evaluate each method as well as demonstrate a successful LRV detection by the J2 antibody in several parasite strains, a freshly isolated patient sample and lesion biopsies of infected mice. CONCLUSIONS/SIGNIFICANCE We propose that refinements of these methods could be transferred to the field for use as a diagnostic tool in detecting the presence of LRV, and potentially assessing the LRV-related risk of complications in cutaneous leishmaniasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different life-cycle stages of Trypanosoma brucei are characterized by stage-specific glycoprotein coats. GPEET procyclin, the major surface protein of early procyclic (insect midgut) forms, is transcribed in the nucleolus by RNA polymerase I as part of a polycistronic precursor that is processed to monocistronic mRNAs. In culture, when differentiation to late procyclic forms is triggered by removal of glycerol, the precursor is still transcribed, but accumulation of GPEET mRNA is prevented by a glycerol-responsive element in the 3' UTR. A genome-wide RNAi screen for persistent expression of GPEET in glycerol-free medium identified a novel protein, NRG1 (Nucleolar Regulator of GPEET 1), as a negative regulator. NRG1 associates with GPEET mRNA and with several nucleolar proteins. These include two PUF proteins, TbPUF7 and TbPUF10, and BOP1, a protein required for rRNA processing in other organisms. RNAi against each of these components prolonged or even increased GPEET expression in the absence of glycerol as well as causing a significant reduction in 5.8S rRNA and its immediate precursor. These results indicate that components of a complex used for rRNA maturation can have an additional role in regulating mRNAs that originate in the nucleolus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce ciliated protozoa, and more specifically the stichotrichous ciliates Oxytricha and Stylonychia, as biological model systems for the analysis of programmed DNA-reorganization processes during nuclear differentiation. These include DNA excision, DNA elimination, reordering of gene segments and specific gene amplification. We show that small nuclear RNAs specify DNA sequences to be excised or retained, but also discuss the need for a RNA template molecule derived from the parental nucleus for these processes. This RNA template guides reordering of gene segments to become functional genes and determines gene copy number in the differentiated nucleus. Since the template is derived from the parental macronucleus, gene reordering and DNA amplification are inherited in a non-Mendelian epigenetic manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some inducible yeast genes relocate to nuclear pores upon activation, but the general relevance of this phenomenon has remained largely unexplored. Here we show that the bidirectional hsp-16.2/41 promoter interacts with the nuclear pore complex upon activation by heat shock in the nematode Caenorhabditis elegans. Direct pore association was confirmed by both super-resolution microscopy and chromatin immunoprecipitation. The hsp-16.2 promoter was sufficient to mediate perinuclear positioning under basal level conditions of expression, both in integrated transgenes carrying from 1 to 74 copies of the promoter and in a single-copy genomic insertion. Perinuclear localization of the uninduced gene depended on promoter elements essential for induction and required the heat-shock transcription factor HSF-1, RNA polymerase II, and ENY-2, a factor that binds both SAGA and the THO/TREX mRNA export complex. After induction, colocalization with nuclear pores increased significantly at the promoter and along the coding sequence, dependent on the same promoter-associated factors, including active RNA polymerase II, and correlated with nascent transcripts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate cancer is the second leading cause of cancer-related death and the most common non-skin cancer in men in the USA. Considerable advancements in the practice of medicine have allowed a significant improvement in the diagnosis and treatment of this disease and, in recent years, both incidence and mortality rates have been slightly declining. However, it is still estimated that 1 man in 6 will be diagnosed with prostate cancer during his lifetime, and 1 man in 35 will die of the disease. In order to identify novel strategies and effective therapeutic approaches in the fight against prostate cancer, it is imperative to improve our understanding of its complex biology since many aspects of prostate cancer initiation and progression still remain elusive. The study of tumor biomarkers, due to their specific altered expression in tumor versus normal tissue, is a valid tool for elucidating key aspects of cancer biology, and may provide important insights into the molecular mechanisms underlining the tumorigenesis process of prostate cancer. PCA3, is considered the most specific prostate cancer biomarker, however its biological role, until now, remained unknown. PCA3 is a long non-coding RNA (ncRNA) expressed from chromosome 9q21 and its study led us to the discovery of a novel human gene, PC-TSGC, transcribed from the opposite strand and in an antisense orientation to PCA3. With the work presented in this thesis, we demonstrate that PCA3 exerts a negative regulatory role over PC-TSGC, and we propose PC-TSGC to be a new tumor suppressor gene that contrasts the transformation of prostate cells by inhibiting Rho-GTPases signaling pathways. Our findings provide a biological role for PCA3 in prostate cancer and suggest a new mechanism of tumor suppressor gene inactivation mediated by non-coding RNA. Also, the characterization of PCA3 and PC-TSGC led us to propose a new molecular pathway involving both genes in the transformation process of the prostate, thus providing a new piece of the jigsaw puzzle representing the complex biology of prostate cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exosome is a 3’ to 5’ exoribonuclease complex that consists of ten essential subunits. In the cytoplasm, the exosome degrades mRNA in a general mRNA turnover pathway and in several mRNA surveillance pathways. In the nucleus, the exosome processes RNA precursors to form small, stable, mature RNA species, including rRNA, snRNA, and snoRNA. In addition to processing these RNAs, the nuclear exosome is also involved in degrading aberrantly processed forms of these RNAs, and others, including mRNA. The 3’ to 5’ exoribonuclease activity of the exosome is contributed by the RNB domain of the only catalytically active subunit, Rrp44p, a member of the RNase II family of enzymes. In addition to the RNB domain, Rrp44p consists of three putative RNA binding domains and has an uncharacterized N-terminus, which includes a CR3 region and PIN domain. In an effort to characterize the cellular functions of the domains of Rrp44p, this study identified a second nuclease active site in the PIN domain. Specifically, the PIN domain exhibits endoribonuclease activity in vitro and is essential for exosome function. Further analysis of the nuclease activities of Rrp44p indicate a role for the exoribonuclease activity of Rrp44p in the cytoplasmic and nuclear exosome. This work has also characterized the CR3 region of Rrp44p, a region that has not yet been characterized in any other protein. This region is needed for the majority, if not all, of the cytoplasmic exosome functions as well as for interaction with the exosome. The CR3 region, along with a histidine residue in the N-terminus of Rrp44p, may coordinate a zinc atom. Preliminary evidence supports a role for this coordination in exosome function. Further investigation, however, is needed to determine the molecular dependence of the exosome on the CR3 region of Rrp44p. Despite its initial discovery thirteen years ago, the essential function of Rrp44p, and the exosome, is not yet known. The studies presented here, however, indicate that the essential function of Rrp44p and the exosome is in the nucleus and depends on the nuclease activities of Rrp44p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence for an RNA gain-of-function toxicity has now been provided for an increasing number of human pathologies. Myotonic dystrophies (DM) belong to a class of RNA-dominant diseases that result from RNA repeat expansion toxicity. Specifically, DM of type 1 (DM1), is caused by an expansion of CUG repeats in the 3'UTR of the DMPK protein kinase mRNA, while DM of type 2 (DM2) is linked to an expansion of CCUG repeats in an intron of the ZNF9 transcript (ZNF9 encodes a zinc finger protein). In both pathologies the mutant RNA forms nuclear foci. The mechanisms that underlie the RNA pathogenicity seem to be rather complex and not yet completely understood. Here, we describe Drosophila models that might help unravelling the molecular mechanisms of DM1-associated CUG expansion toxicity. We generated transgenic flies that express inducible repeats of different type (CUG or CAG) and length (16, 240, 480 repeats) and then analyzed transgene localization, RNA expression and toxicity as assessed by induced lethality and eye neurodegeneration. The only line that expressed a toxic RNA has a (CTG)(240) insertion. Moreover our analysis shows that its level of expression cannot account for its toxicity. In this line, (CTG)(240.4), the expansion inserted in the first intron of CG9650, a zinc finger protein encoding gene. Interestingly, CG9650 and (CUG)(240.4) expansion RNAs were found in the same nuclear foci. In conclusion, we suggest that the insertion context is the primary determinant for expansion toxicity in Drosophila models. This finding should contribute to the still open debate on the role of the expansions per se in Drosophila and in human pathogenesis of RNA-dominant diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Next-generation sequencing (NGS) is a valuable tool for the detection and quantification of HIV-1 variants in vivo. However, these technologies require detailed characterization and control of artificially induced errors to be applicable for accurate haplotype reconstruction. To investigate the occurrence of substitutions, insertions, and deletions at the individual steps of RT-PCR and NGS, 454 pyrosequencing was performed on amplified and non-amplified HIV-1 genomes. Artificial recombination was explored by mixing five different HIV-1 clonal strains (5-virus-mix) and applying different RT-PCR conditions followed by 454 pyrosequencing. Error rates ranged from 0.04-0.66% and were similar in amplified and non-amplified samples. Discrepancies were observed between forward and reverse reads, indicating that most errors were introduced during the pyrosequencing step. Using the 5-virus-mix, non-optimized, standard RT-PCR conditions introduced artificial recombinants in a fraction of at least 30% of the reads that subsequently led to an underestimation of true haplotype frequencies. We minimized the fraction of recombinants down to 0.9-2.6% by optimized, artifact-reducing RT-PCR conditions. This approach enabled correct haplotype reconstruction and frequency estimations consistent with reference data obtained by single genome amplification. RT-PCR conditions are crucial for correct frequency estimation and analysis of haplotypes in heterogeneous virus populations. We developed an RT-PCR procedure to generate NGS data useful for reliable haplotype reconstruction and quantification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells must rapidly sense and respond to a wide variety of potentially cytotoxic external stressors to survive in a constantly changing environment. In a search for novel genes required for stress tolerance in Saccharomyces cerevisiae, we identified the uncharacterized open reading frame YER139C as a gene required for growth at 37 degrees C in the presence of the heat shock mimetic formamide. YER139C encodes the closest yeast homolog of the human RPAP2 protein, recently identified as a novel RNA polymerase II (RNAPII)-associated factor. Multiple lines of evidence support a role for this gene family in transcription, prompting us to rename YER139C RTR1 (regulator of transcription). The core RNAPII subunits RPB5, RPB7, and RPB9 were isolated as potent high-copy-number suppressors of the rtr1Delta temperature-sensitive growth phenotype, and deletion of the nonessential subunits RPB4 and RPB9 hypersensitized cells to RTR1 overexpression. Disruption of RTR1 resulted in mycophenolic acid sensitivity and synthetic genetic interactions with a number of genes involved in multiple phases of transcription. Consistently, rtr1Delta cells are defective in inducible transcription from the GAL1 promoter. Rtr1 constitutively shuttles between the cytoplasm and nucleus, where it physically associates with an active RNAPII transcriptional complex. Taken together, our data reveal a role for members of the RTR1/RPAP2 family as regulators of core RNAPII function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bronchial epithelial cells play a pivotal role in airway inflammation, but little is known about posttranscriptional regulation of mediator gene expression during the inflammatory response in these cells. Here, we show that activation of human bronchial epithelial BEAS-2B cells by proinflammatory cytokines interleukin-4 (IL-4) and tumor necrosis factor alpha (TNF-alpha) leads to an increase in the mRNA stability of the key chemokines monocyte chemotactic protein 1 and IL-8, an elevation of the global translation rate, an increase in the levels of several proteins critical for translation, and a reduction of microRNA-mediated translational repression. Moreover, using the BEAS-2B cell system and a mouse model, we found that RNA processing bodies (P bodies), cytoplasmic domains linked to storage and/or degradation of translationally silenced mRNAs, are significantly reduced in activated bronchial epithelial cells, suggesting a physiological role for P bodies in airway inflammation. Our study reveals an orchestrated change among posttranscriptional mechanisms, which help sustain high levels of inflammatory mediator production in bronchial epithelium during the pathogenesis of inflammatory airway diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recognition of the importance of mRNA turnover in regulating eukaryotic gene expression has mandated the development of reliable, rigorous, and "user-friendly" methods to accurately measure changes in mRNA stability in mammalian cells. Frequently, mRNA stability is studied indirectly by analyzing the steady-state level of mRNA in the cytoplasm; in this case, changes in mRNA abundance are assumed to reflect only mRNA degradation, an assumption that is not always correct. Although direct measurements of mRNA decay rate can be performed with kinetic labeling techniques and transcriptional inhibitors, these techniques often introduce significant changes in cell physiology. Furthermore, many critical mechanistic issues as to deadenylation kinetics, decay intermediates, and precursor-product relationships cannot be readily addressed by these methods. In light of these concerns, we have previously reported transcriptional pulsing methods based on the c-fos serum-inducible promoter and the tetracycline-regulated (Tet-off) promoter systems to better explain mechanisms of mRNA turnover in mammalian cells. In this chapter, we describe and discuss in detail different protocols that use these two transcriptional pulsing methods. The information described here also provides guidelines to help develop optimal protocols for studying mammalian mRNA turnover in different cell types under a wide range of physiologic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells infected with MuSVts110 express a viral RNA which contains an inherent conditional defect in RNA splicing. It has been shown previously that splicing of the MuSVts110 primary transcript is essential to morphological transformation of 6m2 cells in vitro. A growth temperature of 33$\sp\circ$C is permissive for viral RNA splicing,and, consequently, 6m2 cells appear morphologically transformed at this temperature. However, 6m2 cells appear phenotypically normal when incubated at 39$\sp\circ$C, the non-permissive temperature for viral RNA splicing.^ After a shift from 39$\sp\circ$C to 33$\sp\circ$C, the coordinate splicing of previously synthesized and newly transcribed MuSVts110 RNA was achieved. By S1 nuclease analysis of total RNA isolated at various times, 5$\sp\prime$ splice site cleavage of the MuSVts110 transcript appeared to occur 60 minutes after the shift to 33$\sp\circ$C, and 30 minutes prior to detectable exon ligation. In addition, consistent with the permissive temperatures and the kinetic timeframe of viral RNA splicing after a shift to 33$\sp\circ$C, four temperature sensitive blockades to primer extension were identified 26-75 bases upstream of the 3$\sp\prime$ splice site. These blockades likely reflect four branchpoint sequences utilized in the formation of MuSVts110 lariat splicing-intermediates.^ The 54-5A4 cell line is a spontaneous revertant of 6m2 cells and appears transformed at all growth temperatures. Primer extension sequence analysis has shown that a five base deletion occurred at the 3$\sp\prime$ splice site in MuSVts110 RNA allowing the expression of a viral transforming protein in 54-5A4 in the absence of RNA splicing, whereas in the parental 6m2 cell line, a splicing event is necessary to generate a similar transforming protein. As a consequence of this deletion, splicing cannot occur and the formation of the four MuSVts110 branched-intermediates were not observed at any temperature in 54-5A4 cells. However, 5$\sp\prime$ splice site cleavage was still detected at 33$\sp\circ$C.^ Finally, we have investigated the role of the 1488 bp deletion which occurred in the generation of MuSVts110 in the activation of temperature sensitive viral RNA splicing. This deletion appears solely responsible for splice site activation. Whether intron size is the crucial factor in MuSVts110 RNA splicing or whether inhibitory sequences were removed by the deletion is currently unknown. (Abstract shortened with permission of author.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ca$\sp{++}$/calmodulin-dependent protein kinase II (CaM-KII) is highly concentrated in mammalian brain, comprising as much as 2% of the total protein in some regions. In forebrain, CaM-KII has been shown to be enriched in postsynaptic structures where it has been implicated in maintaining cytoskeletal structure, and more recently in signal transduction mechanisms and processes underlying learning and memory. CaM-KII appears to exist as a holoenzyme composed of two related yet distinct subunits, alpha and beta. The ratio of the subunits in the holoenzyme varies with different brain regions and to some degree with subcellular fractions. The two subunits also display distinct developmental profiles. Levels of alpha subunit are not evident at birth but increase dramatically during postnatal development, while levels of beta subunit are readily detected at birth and only gradual increase postnatally. The distinct regional, subcellular and developmental distribution of the two subunits of CaM-KII have prompted us to examine factors involved in regulating the synthesis of the subunit proteins.^ This dissertation addresses the regional and developmental expression of the mRNAs for the individual subunits using in situ hybridization histochemistry and northern slot-blot analysis. By comparing the developmental profile of each mRNA with that of its respective protein, we have determined that initiation of gene transcription is likely the primary site for regulating CaM-KII protein levels. Furthermore, the distinct cytoarchitecture of the hippocampus has allowed us to demonstrate that the alpha, but not beta subunit mRNA is localized in dendrites of certain forebrain neurons. The localization of alpha subunit mRNA at postsynaptic structures, in concert with the accumulation of subunit protein, suggests that dendritic synthesis of CaM-KII alpha subunit may be important for maintaining postsynaptic structure and/or function. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MuSVts110 is a conditionally defective mutant of Moloney murine sarcoma virus which undergoes a novel tmperature-dependent splice event at growth temperatures of 33$\sp\circ$C or lower. Relative to wild-type MuSV-124, MuSVts110 contains a 1487 base deletion spanning from the 3$\sp\prime$ end of the p30 gag coding region to just downstream of the first v-mos initiation codon. As a result, the gag and mos genes are fused out of frame and no v-mos protein is expressed. However, upon a shift to 33$\sp\circ$C or lower, a splice event occurs which removes 431 bases, realigns the gag and mos genes, and allows read-through translation of a P85gag-mos transforming protein. Interestingly, while the cryptic splice sites utilized in MuSVts110 are present and unaltered in MuSV-124, they are never used. Due to the 1487 base deletion, the MuSV-124 intron was reduced from 1919 to 431 bases suggesting that intron size might be involved in the activation of these cryptic splice sites in MuSVts110. Since the splicing phenotype of the MuSVts110 equivalent (TS32 DNA) which contains the identical 1487 base deletion introduced into otherwise wild-type MuSV-124 DNA, was indistinguishable from authentic MuSVts110, it was concluded that this deletion alone is responsible for activation of the cryptic splice sites used in MuSVts110. These results also confirmed that thermodependent splicing is an intrinsic property of the viral RNA and not due to some cellular defect. Furthermore, analysis of gag gene deletion and frameshift MuSVts110 mutants demonstrated that viral gag gene proteins do not play a role in regulation of MuSVts110 splicing. Instead, cis-acting viral sequences appear to mediate regulation of the splice event.^ Our initial observation that truncation of the MuSVts110 transcript, leaving only residual amounts of the flanking exon sequences, completely abolished splicing activity argued that exon sequences might participate in the regulation of the splice event.^ Analysis of exon sequence involvement has also identified cis-acting sequences important in the thermodependence of the splice event. Data suggest that regulation of the MuSVts110 splice event involves multiple interactions between specific intron and exon sequences and spliceosome components which together limit splicing activity to temperatures of 33$\sp\circ$C or lower while simultaneously restricting splicing to a maximum of 50% efficiency. (Abstract shortened with permission of author.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Untreated AKR mice develop spontaneous thymic lymphomas by 6-12 months of age. Lymphoma development is accelerated when young mice are injected with the carcinogen N-methyl-N-nitrosourea (MNU). Selected molecular and cellular events were compared during the latent period preceding "spontaneous" (retrovirally-induced) and MNU-induced thymic lymphoma development in AKR mice. These studies were undertaken to test the hypothesis that thymic lymphomas induced in the same inbred mouse strain by endogenous retroviruses and by a chemical carcinogen develop by different mechanisms.^ Immunofluorescence analysis of differentiation antigens showed that most MNU-induced lymphomas express an immature CD4-8+ profile. In contrast, spontaneous lymphomas represent each of the major lymphocyte subsets. These data suggest involvement of different target populations in MNU-induced and spontaneous lymphomas. Analyses at intervals after MNU treatment revealed selective expansion of the CD4-8+ J11d+ thymocyte subset at 8-10 weeks post-MNU in 68% of the animals examined, suggesting that these cells are targets for MNU-induced lymphomagenesis. Untreated age-matched animals showed no selective expansion of thymocyte subsets.^ Previous data have shown that both spontaneous and MNU-induced lymphomas are monoclonal or oligoclonal. Distinct rearrangement patterns of the J$\sb2$ region of the T-cell receptor $\beta$-chain showed emergence of clonal thymocyte populations beginning at 6-7 weeks after MNU treatment. However, lymphocytes from untreated animals showed no evidence of clonal expansion at the time intervals investigated.^ Activation of c-myc frequently occurs during development of B- and T- cell lymphomas. Both spontaneous and MNU-induced lymphomas showed increased c-myc transcript levels. Increased c-myc transcription was first detected at 6 weeks post-MNU, and persisted throughout the latent period. However, untreated animals showed no increases in c-myc transcripts at the time intervals examined. Another nuclear oncogene, c-fos, did not display a similar change in RNA transcription during the latent period.^ These results supports the hypothesis that MNU-induced and spontaneous tumors develop by multi-step pathways which are distinct with respect to the target cell population affected. Clonal emergence and c-myc deregulation are important steps in the development of both MNU-induced and spontaneous tumors, but the onset of these events is later in spontaneous tumor development. ^