889 resultados para REPEATS
Resumo:
Zoonoses, diseases affecting both humans and animals, can exert tremendous pressures on human and veterinary health systems, particularly in resource limited countries. Anthrax is one such zoonosis of concern and is a disease requiring greater public health attention in Nigeria. Here we describe the genetic diversity of Bacillus anthracis in Nigeria and compare it to Chad, Cameroon and a broader global dataset based on the multiple locus variable number tandem repeat (MLVA-25) genetic typing system. Nigerian B. anthracis isolates had identical MLVA genotypes and could only be resolved by measuring highly mutable single nucleotide repeats (SNRs). The Nigerian MLVA genotype was identical or highly genetically similar to those in the neighboring countries, confirming the strains belong to this unique West African lineage. Interestingly, sequence data from a Nigerian isolate shares the anthrose deficient genotypes previously described for strains in this region, which may be associated with vaccine evasion. Strains in this study were isolated over six decades, indicating a high level of temporal strain stability regionally. Ecological niche models were used to predict the geographic distribution of the pathogen for all three countries. We describe a west-east habitat corridor through northern Nigeria extending into Chad and Cameroon. Ecological niche models and genetic results show B. anthracis to be ecologically established in Nigeria. These findings expand our understanding of the global B. anthracis population structure and can guide regional anthrax surveillance and control planning.
Resumo:
A methicillin-resistant mecB-positive Macrococcus caseolyticus (strain KM45013) was isolated from the nares of a dog with rhinitis. It contained a novel 39-kb transposon-defective complete mecB-carrying staphylococcal cassette chromosome mec element (SCCmecKM45013). SCCmecKM45013 contained 49 coding sequences (CDSs), was integrated at the 3' end of the chromosomal orfX gene, and was delimited at both ends by imperfect direct repeats functioning as integration site sequences (ISSs). SCCmecKM45013 presented two discontinuous regions of homology (SCCmec coverage of 35%) to the chromosomal and transposon Tn6045-associated SCCmec-like element of M. caseolyticus JCSC7096: (i) the mec gene complex (98.8% identity) and (ii) the ccr-carrying segment (91.8% identity). The mec gene complex, located at the right junction of the cassette, also carried the β-lactamase gene blaZm (mecRm-mecIm-mecB-blaZm). SCCmecKM45013 contained two cassette chromosome recombinase genes, ccrAm2 and ccrBm2, which shared 94.3% and 96.6% DNA identity with those of the SCCmec-like element of JCSC7096 but shared less than 52% DNA identity with the staphylococcal ccrAB and ccrC genes. Three distinct extrachromosomal circularized elements (the entire SCCmecKM45013, ΨSCCmecKM45013 lacking the ccr genes, and SCCKM45013 lacking mecB) flanked by one ISS copy, as well as the chromosomal regions remaining after excision, were detected. An unconventional circularized structure carrying the mecB gene complex was associated with two extensive direct repeat regions, which enclosed two open reading frames (ORFs) (ORF46 and ORF51) flanking the chromosomal mecB-carrying gene complex. This study revealed M. caseolyticus as a potential disease-associated bacterium in dogs and also unveiled an SCCmec element carrying mecB not associated with Tn6045 in the genus Macrococcus.
Resumo:
Previous studies have demonstrated the serologic and T-cell immunogenicity for cattle of a recombinant form of the apical complex-associated 77-kDa merozite protein of Babesia bovis, designated Bb-1. The present study characterizes the immunogenic epitopes of the Bb-1 protein. A series of recombinant truncated fusion proteins spanning the majority of the Bb-1 protein were expressed in Escherichia coli, and their reactivities with bovine peripheral blood mononuclear cells and T-cell clones derived from B. bovis-immune cattle and with rabbit antibodies were determined. Lymphocytes from two immune cattle were preferentially stimulated by the N-terminal half of the Bb-1 protein (amino acids 23 to 266, termed Bb-1A), localizing the T-cell epitopes to the Bb-1A portion of the molecule. CD4+ T-cell clones derived by stimulation with the intact Bb-1 fusion protein were used to identify two T-cell epitopes in the Bb-1A protein, consisting of amino acids SVVLLSAFSGN VWANEAEVSQVVK and FSDVDKTKSTEKT (residues 23 to 46 and 82 to 94). In contrast, rabbit antiserum raised against the intact fusion protein reacted only with the C-terminal half of the protein (amino acids 267 to 499, termed Bb-1B), which contained 28 tandem repeats of the tetrapeptide PAEK or PAET. Biological assays and Northern (RNA) blot analyses for cytokines revealed that following activation with concanavalin A, T-cell clones reactive against the two Bb-1A epitopes produced interleukin-2, gamma interferon, and tumor necrosis factors beta and alpha, but not interleukin-4, suggesting that the Bb-1 antigen preferentially stimulates the Th1 subset of CD4+ T cells in cattle. The studies described here report for the first time the characterization, by cytokine production, of the Th1 subset of bovine T cells and show that, as in mice, protozoal antigens can induce Th1 cells in ruminants. This first demonstration of B. bovis-encoded Th1 cell epitopes provides a rationale for incorporation of all or part of the Bb-1 protein into a recombinant vaccine.
Resumo:
In many organisms, polarity of the oocyte is established post-transcriptionally via subcellular RNA localization. Many RNAs are localized during oogenesis in Xenopus laevis, including Xlsirts ( Xenopus laevis short interspersed repeat transcripts) [Kloc, 1993]. Xlsirts constitute a large family defined by highly homologous repeat units 79–81 nucleotides in length. Endogenous Xlsirt RNAs use the METRO (Message Transport Organizer) pathway of localization, where RNAs are transported from the nucleus to the mitochondrial cloud in stage I oocytes. Secondly, RNAs anchor at the vegetal pole in stage II oocytes. Exogenous Xlsirt RNAs can also utilize the Late pathway of localization, which involves localization to the vegetal cortex during stage III of oogenesis and results in RNAs anchored in the cortex of the entire vegetal hemisphere. ^ The Xlsirts localization signal is contained within the repeat region. This study was designed to test the hypothesis that there are cis -acting localization elements in Xlsirts, and that higher order structure plays a role. Results of experiments on Xlsirt P11, a 1700 basepair (bp) family member, led to the conclusion that a 137-bp fragment of the repetitive region is necessary and sufficient for METRO and Late pathway localization. This analysis definitively demonstrates that the Xlsirt localization signal for the METRO and Late pathways reside within the repetitive region and not within the flanking regions. Analysis of Xlsirt linker scanning mutations revealed two METRO-pathway specific subelements, and one Late-pathway specific subelement. Functional, computer, and biochemical evidence relates the higher order structure of this element to its ability to function as a localization element. ^ Xlsirt 137 is 99% identical to the Xlsirt consensus sequence identified in this study, suggesting that it is the localization element for all localized Xlsirt family members. The repeat unit was reframed based on function, rather than arbitrarily based on sequence. This work supports the hypothesis presented in 1981 by George Spohr, who originally isolated the Xlsirts, which stated that the highly conserved repetitive elements must be constrained from variability due to some unknown function of the repeats themselves. These studies shed light on the mechanism of RNA localization, linking structure and function. ^
Resumo:
Genetic anticipation is defined as a decrease in age of onset or increase in severity as the disorder is transmitted through subsequent generations. Anticipation has been noted in the literature for over a century. Recently, anticipation in several diseases including Huntington's Disease, Myotonic Dystrophy and Fragile X Syndrome were shown to be caused by expansion of triplet repeats. Anticipation effects have also been observed in numerous mental disorders (e.g. Schizophrenia, Bipolar Disorder), cancers (Li-Fraumeni Syndrome, Leukemia) and other complex diseases. ^ Several statistical methods have been applied to determine whether anticipation is a true phenomenon in a particular disorder, including standard statistical tests and newly developed affected parent/affected child pair methods. These methods have been shown to be inappropriate for assessing anticipation for a variety of reasons, including familial correlation and low power. Therefore, we have developed family-based likelihood modeling approaches to model the underlying transmission of the disease gene and penetrance function and hence detect anticipation. These methods can be applied in extended families, thus improving the power to detect anticipation compared with existing methods based only upon parents and children. The first method we have proposed is based on the regressive logistic hazard model. This approach models anticipation by a generational covariate. The second method allows alleles to mutate as they are transmitted from parents to offspring and is appropriate for modeling the known triplet repeat diseases in which the disease alleles can become more deleterious as they are transmitted across generations. ^ To evaluate the new methods, we performed extensive simulation studies for data simulated under different conditions to evaluate the effectiveness of the algorithms to detect genetic anticipation. Results from analysis by the first method yielded empirical power greater than 87% based on the 5% type I error critical value identified in each simulation depending on the method of data generation and current age criteria. Analysis by the second method was not possible due to the current formulation of the software. The application of this method to Huntington's Disease and Li-Fraumeni Syndrome data sets revealed evidence for a generation effect in both cases. ^
Resumo:
The molecular mechanisms responsible for the expansion and deletion of trinucleotide repeat sequences (TRS) are the focus of our studies. Several hereditary neurological diseases including Huntington's disease, myotonic dystrophy, and fragile X syndrome are associated with the instability of TRS. Using the well defined and controllable model system of Escherichia coli, the influences of three types of DNA incisions on genetic instability of CTG•CAG repeats were studied: DNA double-strand breaks (DSB), single-strand nicks, and single-strand gaps. The DNA incisions were generated in pUC19 derivatives by in vitro cleavage with restriction endonucleases. The cleaved DNA was then transformed into E. coli parental and mutant strains. Double-strand breaks induced deletions throughout the TRS region in an orientation dependent manner relative to the origin of replication. The extent of instability was enhanced by the repeat length and sequence (CTG•CAG vs. CGG•CCG). Mutations in recA and recBC increased deletions, mutations in recF stabilized the TRS, whereas mutations in ruvA had no effect. DSB were repaired by intramolecular recombination, versus an intermolecular gene conversion or crossover mechanism. 30 nt gaps formed a distinct 30 nt deletion product, whereas single strand nicks and gaps of 15 nts did not induce expansions or deletions. Formation of this deletion product required the CTG•CAG repeats to be present in the single-stranded region and was stimulated by E. coli DNA ligase, but was not dependent upon the RecFOR pathway. Models are presented to explain the DSB induced instabilities and formation of the 30 nucleotide deletion product. In addition to the in vitro creation of DSBs, several attempts to generate this incision in vivo with the use of EcoR I restriction modification systems were conducted. ^
Resumo:
Friedreich's ataxia is caused by the expansion of the GAA•TTC trinucleotide repeat sequence located in intron 1 of the frataxin gene. The long GAA•TTC repeats are known to form several non-B DNA structures including hairpins, triplexes, parallel DNA and sticky DNA. Therefore it is believed that alternative DNA structures play a role in the loss of mRNA transcript and functional frataxin protein in FRDA patients. We wanted to further elucidate the characteristics for formation and stability of sticky DNA by evaluating the structure in a plasmid based system in vitro and in vivo in Escherichia coli. The negative supercoil density of plasmids harboring different lengths of GAA•TTC repeats, as well as either one or two repeat tracts were studied in E. coli to determine if plasmids containing two long tracts (≥60 repeats) in a direct repeat orientation would have a different topological effect in vivo compared to plasmids that harbored only one GAA•TTC tract or two tracts of < 60 repeats. The experiments revealed that, in fact, sticky DNA forming plasmids had a lower average negative supercoil density (-σ) compared to all other control plasmids used that had the potential to form other non-B DNA structures such as triplexes or Z-DNA. Also, the requirements for in vitro dissociation and reconstitution of the DNA•DNA associated region of sticky DNA were evaluated. Results conclude that the two repeat tracts associate in the presence of negative supercoiling and MgCl 2 or MnCl2 in a time and concentration-dependent manner. Interaction of the repeat sequences was not observed in the absence of negative supercoiling and/or MgCl2 or in the presence of other monovalent or divalent cations, indicating that supercoiling and quite specific cations are needed for the association of sticky DNA. These are the first experiments studying a more specific role of supercoiling and cation influence on this DNA conformation. To support our model of the topological effects of sticky DNA in plasmids, changes in sticky DNA band migration was measured with reference to the linear DNA after treatment with increasing concentrations of ethidium bromide (EtBr). The presence of independent negative supercoil domains was confirmed by this method and found to be segregated by the DNA-DNA associated region. Sequence-specific polyamide molecules were used to test the effect of binding of the ligands to the GAA•TTC repeats on the inhibition of sticky DNA. The destabilization of the sticky DNA conformation in vitro through this binding of the polyamides demonstrated the first conceptual therapeutic approach for the treatment of FRDA at the DNA molecular level. ^ Thus, examining the properties of sticky DNA formed by these long repeat tracts is important in the elucidation of the possible role of sticky DNA in Friedreich's ataxia. ^
Resumo:
Proteins containing the late embryogenesis abundant (LEA) motif comprise an evolutionarily conserved family, long postulated to protect plant embryos from stress and death. However, the significance of LEA-containing proteins and the mechanisms behind their function remain undetermined. Here we show that PRELI, a mammalian protein that possesses tandem repeats of the LEA motif, can protect cells against staurosporine, TNF-α or UV irradiation-induced apoptosis. We found that key to PRELI-dependent mechanisms that promote cell resistance to death are the stabilization of the respiratory chain, upholding of mitochondrial membrane potential and retention of apoptogenic molecules. By in vitro and in vivo studies, we also show that the expression of mutant PRELI/LEA- proteins lacking the LEA motif, results in the complete loss of PRELI's anti-apoptotic functions. Collectively, our data uncover a new molecular player in the control of apoptosis and support the hypothesis that LEA-containing proteins are evolutionarily conserved cell protectors against stress and death. ^
Resumo:
Disruption of the mechanisms that regulate cell-cycle checkpoints, DNA repair, and apoptosis results in genomic instability and often leads to the development of cancer. In response to double stranded breaks (DSBs) as induced by ionizing radiation (IR), generated during DNA replication, or through immunoglobulin heavy chain (IgH) rearrangements in T and B cells of lymphoid origin, the protein kinases ATM and ATR are central players that activate signaling pathways leading to DSB repair. p53 binding protein 1 (53BP1) participates in the repair of DNA double stranded breaks (DSBs) where it is recruited to or near sites of DNA damage. In addition to its well established role in DSB repair, multiple lines of evidence implicate 53BP1 in transcription which stem from its initial discovery as a p53 binding protein in a yeast two-hybrid screen. However, the mechanisms behind the role of 53BP1 in these processes are not well understood. ^ 53BP1 possesses several motifs that are likely important for its role in DSB repair including two BRCA1 C-terminal repeats, tandem Tudor domains, and a variety of phosphorylation sites. In addition to these motifs, we identified a glycine and arginine rich region (GAR) upstream of the Tudor domains, a sequence that is oftentimes serves as a site for protein arginine methylation. The focus of this project was to characterize the methylation of 53BP1 and to evaluate how methylation influenced the role of 53BP1 as a tumor suppressor. ^ Using a variety of biochemical techniques, we demonstrated that 53BP1 is methylated by the PRMT1 methyltransferase in vivo. Moreover, GAR methylation occurs on arginine residues in an asymmetric manner. We further show that sequences upstream of the Tudor domains that do not include the GAR stretch are sufficient for 53BP1 oligomerization in vivo. While investigating the role of arginine methylation in 53BP1 function, we discovered that 53BP1 associates with proteins of the general transcription apparatus as well as to other factors implicated in coordinating transcription with chromatin function. Collectively, these data support a role for 53BP1 in regulating transcription and provide insight into the possible mechanisms by which this occurs. ^
Resumo:
CpG island methylation within single gene promoters can silence expression of associated genes. We first extended these studies to bidirectional gene pairs controlled by single promoters. We showed that hypermethylation of bidirectional promoter-associated CpG island silences gene pairs (WNT9A/CD558500, CTDSPL/BC040563, and KCNK15/BF 195580) simultaneously. Hypomethylation of these promoters by 5-aza-2'-deoxycytidine treatment reactivated or enhanced gene expression bidirectionally. These results were further confirmed by luciferase assays. Methylation of WNT9A/CD558500 and CTDSPL/BC040563 promoters occurs frequently in primary colon cancers and acute lymphoid leukemia, respectively. ^ Next we sought to understand the origins of hypermethylation in cancer. CpG islands associated with tumor suppressor genes are normally free from methylation, but can be hypermethylated in cancer. It remains poorly understood how these genes are protected from methylation in normal tissues. In our studies, we aimed to determine if cis-acting elements in these genes are responsible for this protection, using the tumor suppressor gene p16 as a model. We found that Alu repeats located both upstream and downstream of the p16 promoter become hypermethylated with age. In colon cancer samples, the methylation level is particularly high, and the promoter can also be affected. Therefore, the protection in the promoter against methylation spreading could fail during tumorigenesis. This methylation pattern in p16 was also observed in cell lines of different tissue origins, and their methylation levels were found to be inversely correlated with that of active histone modification markers (H3K4-3me and H3K9-Ac). To identify the mechanism of protection against methylation spreading, we constructed serial deletions of the p16 protected region and used silencing of a neomycin reporter gene to evaluate the protective effects of these fragments. A 126 bp element was identified within the region which exerts bidirectional protection against DNA methylation, independently of its transcriptional activity. The protective strength of this element is comparable to that of the HS4 insulator. During long-term culture, the presence of this element significantly slowed methylation spreading. In conclusion, we have found that an element located in the p16 promoter is responsible for protection against DNA methylation spreading in normal tissues. The failure of protective cis-elements may be a general feature of tumor-suppressor gene silencing during tumorigenesis. ^
Resumo:
Macromolecular interactions, such as protein-protein interactions and protein-DNA interactions, play important roles in executing biological functions in cells. However the complexity of such interactions often makes it very challenging to elucidate the structural details of these subjects. In this thesis, two different research strategies were applied on two different two macromolecular systems: X-ray crystallography on three tandem FF domains of transcription regulator CA150 and electron microscopy on STAT1-importin α5 complex. The results from these studies provide novel insights into the function-structure relationships of transcription coupled RNA splicing mediated by CA150 and the nuclear import process of the JAK-STAT signaling pathway. ^ The first project aimed at the protein-protein interaction module FF domain, which often occurs as tandem repeats. Crystallographic structure of the first three FF domains of human CA150 was determined to 2.7 Å resolution. This is the only crystal structure of an FF domain and the only structure on tandem FF domains to date. It revealed a striking connectivity between an FF domain and the next. Peptide binding assay with the potential binding ligand of FF domains was performed using fluorescence polarization. Furthermore, for the first time, FF domains were found to potentially interact with DNA. DNA binding assays were also performed and the results were supportive to this newly proposed functionality of an FF domain. ^ The second project aimed at understanding the molecular mechanism of the nuclear import process of transcription factor STAT1. The first structural model of pSTAT1-importin α5 complex in solution was built from the images of negative staining electron microscopy. Two STAT1 molecules were observed to interact with one molecule of importin α5 in an asymmetric manner. This seems to imply that STAT1 interacts with importin α5 with a novel mechanism that is different from canonical importin α-cargo interactions. Further in vitro binding assays were performed to obtain more details on the pSTAT1-importin α5 interaction. ^
Resumo:
Structure-function analysis of human Integrator subunit 4 Anupama Sataluri Advisor: Eric. J. Wagner, Ph.D. Uridine-rich small nuclear RNAs (U snRNA) are RNA Polymerase-II (RNAPII) transcripts that are ubiquitously expressed and are known to be essential for gene expression. snRNAs play a key role in mRNA splicing and in histone mRNA expression. Inaccurate snRNA biosynthesis can lead to diseases related to defective splicing and histone mRNA expression. Although the 3′ end formation mechanism and processing machinery of other RNAPII transcripts such as mRNA has been well studied, the mechanism of snRNA 3′ end processing has remained a mystery until the recent discovery of the machinery that mediates this process. In 2005, a complex of 14 subunits (the Integrator complex) associated with RNA Polymerase-II was discovered. The 14subunits were annotated Integrator 1-14 based on their size. The subunits of this complex together were found to facilitate 3′ end processing of snRNA. Identification of the Integrator complex propelled research in the direction of understanding the events of snRNA 3’end processing. Recent studies from our lab confirmed that Integrator subunit (IntS) 9 and 11 together perform the endonucleolytic cleavage of the nascent snRNA 3′ end to generate mature snRNA. However, the role of other members of the Integrator complex remains elusive. Current research in our lab is focused on deciphering the role of each subunit within the Integrator complex This work specifically focuses on elucidating the role of human Integrator subunit 4 (IntS4) and understanding how it facilitates the overall function of the complex. IntS4 has structural similarity with a protein called “Symplekin”, which is part of the mRNA 3’end processing machinery. Symplekin has been thoroughly researched in recent years and structure-function correlation studies in the context of mRNA 3’end processing have reported a scaffold function for Symplekin due to the presence of HEAT repeat motifs in its N-terminus. Based upon the structural similarity between IntS4 and Symplekin, we hypothesized that Integrator subunit 4 may be behaving as a Symplekin-like scaffold molecule that facilitates the interaction between other members of the Integrator Complex. To answer this question, the two important goals of this study were to: 1) identify the region of IntS4, which is important for snRNA 3′ end processing and 2) determine binding partners of IntS4 which promote its function as a scaffold. IntS4 structurally consists of a highly conserved N-terminus with 8 HEAT repeats, followed by a nonconserved C- terminus. A series of siRNA resistant N and C-terminus deletion constructs as well as specific point mutants within its N-terminal HEAT repeats were generated for human IntS4 and, utilizing a snRNA transcriptional readthrough GFP-reporter assay, we tested their ability to rescue misprocessing. This assay revealed a possible scaffold like property of IntS4. To probe IntS4 for interaction partners, we performed co-immunoprecipitation on nuclear extracts of IntS4 expressing stable cell lines and identified IntS3 and IntS5 among other Integrator subunits to be binding partners which facilitate the scaffold like function of hIntS4. These findings have established a critical role for IntS4 in snRNA 3′ end processing, identified that both its N and C termini are essential for its function, and mapped putative interaction domains with other Integrator subunits.
Resumo:
Normal humans have one red and at least one green visual pigment genes. These genes are tightly linked as tandem repeats on the X chromosome and each of them has six exons. There is only one X-linked visual pigment gene in New World monkeys (NWMs) but the locus has three polymorphic alleles encoding red, yellow and green visual pigments, respectively. The spectral properties of the squirrel monkey and the marmoset (both NWMs) have been studied and partial sequences of the three alleles are available. To study the evolutionary history of these X-linked opsin genes in humans and NWMs, coding and intron sequences of the three squirrel monkey alleles and the three marmoset alleles were amplified by PCR followed by subcloning and sequencing. Introns 2 and 4 of the human red and green pigment genes were also sequenced. The results obtained are as follows: (1) The sequences of introns 2 and 4 of the human red and green opsin genes are significantly more similar between the two genes than are coding sequences, contrary to the usual situation where coding regions are better conserved in evolution than are introns. The high similarities in the two introns are probably due to recent gene conversion events during evolution of the human lineage. (2) Phylogenetic analysis of both intron and exon sequences indicates that the phylogenetic tree of the available primate opsin genes is the same as the species tree. The two human genes were derived from a gene duplication event after the divergence of the human and NWM lineages. The three alleles in each of the two NWM species diverged after the split of the two NWMs but have persisted in the population for at least 5 million years. (3) Allelic gene conversion might have occurred between the three squirrel monkey alleles. (4) A model of additive effect of hydroxyl-bearing amino acids on spectral tuning is proposed by treating some unknown variables as groups. Under the assumption that some residues have no effect, it is found that at least five amino acid residues, at positions 178 (3 nm), 180 (5 nm), 230 ($-$4 nm), 277 (9 nm) and 285 (13 nm), have linear spectral tuning effects. (5) Adaptive evolution of the opsin genes to different spectral peaks was observed at four residues that are important for spectral tuning. ^
Resumo:
The discovery of expanded simple repeated sequences causing or associated with human disease has lead to a new area of research involved in the elucidation of how the expanded repeat causes disease and how the repeat becomes unstable. ^ To study the genetic basis of the (CTG)n repeat instability in the DMPK gene in myotonic dystrophy (DM1) patients, somatic cell hybrids were constructed between the lymphocytes of DM1 patients and a variety of Chinese hamster ovary (CHO) cell DNA repair gene deficient mutants. By using small pool PCR (SP-PCR), the instability of the (CTG)n can be quantitated for both the frequency and sizes of length change mutations. ^ Additional SP-PCR analysis on 2/11 subclones generated from this original hybrid showed a marked increase in large repeat deletions, ∼50%. A bimodal distribution of repeats was seen around the progenitor allele and at a large deleted product (within the normal range) with no intermediate products present. ^ To determine if the repair capacity of the CHO cell led to a mutator phenotype in the hamster and hybrid clones, SP-PCR was also done on 3 hamster microsatellites in a variety of hamster cell backgrounds. No variant alleles were seen in over 2500 genome equivalents screened. ^ Human-hamster hybrids have long been shown to be chromosomally unstable, yet information about the stability of repeated sequences was not known. To test if repeat instability was associated with either intact or non-intact human chromosomes, more than 300 microsatellite repeats on 13 human chromosomes (intact and non-intact) were analyzed in eight hybrid cells. No variants were seen between the hybrid and patient alleles in the hybrids. ^ To identify whether DM1 patients have a previously undetected level of genome wide instability or if the instability is truly locus specific, SP-PCR was done on 6 human microsatellites within the patient used to make the hybrid cells. No variants were seen in over 1000 genomes screened. ^ These studies show that the somatic cell hybrid approach is a genetically stable system that allows for the determination of factors that could lead to changes in microsatellite instability. It also shows that there is something inherent about the DM1 expanded (CTG)n repeat that it is solely targeted by, as of yet, and unknown mechanism that causes the repeat to be unstable. (Abstract shortened by UMI.)^
Resumo:
Mycobacterium tuberculosis, the causative agent of tuberculosis, is a facultative intracellular pathogen that uses the host mononuclear phagocyte as a niche for survival and replication during infection. Complement component C3 has previously been shown to enhance the binding of M. tuberculosis to mononuclear phagocytes. Using a C3 ligand affinity blot protocol, we identified a 30 kDa C3-binding protein in M. tuberculosis as heparin-binding hemagglutinin (HbhA). HbhA was found to be a hydrophobic protein that localized to the cell membrane/cell wall fraction of M. tuberculosis, and this protein has previously been shown by others to be located on the surface of M. tuberculosis. The C3-binding activity of HbhA was localized to the C-terminus of the protein, which consists of lysine-alanine repeats. Full-length recombinant HbhA coated onto latex beads was shown to mediate the adherence of the beads to murine macrophage-like cells in both a C3-dependent and a C3-independent manner. An in-frame 576 by deletion in the hbhA gene was created in a virulent strain of M. tuberculosis using a PCR technique known as gene splicing by overlap extension (SOEing). Using the ΔhbhA mutant, HbhA was found not to be necessary for growth of M. tuberculosis in laboratory media or in macrophage-like cells, nor is HbhA required for adherence of M. tuberculosis to macrophage-like cells. HbhA is, however, required for infectivity of M. tuberculosis in mice. Mice infected with the ΔhbhA mutant show decreased growth in the lungs, liver, and spleen compared to mice infected with the wild-type strain. Using the ΔhbhA mutant strain, we were able to purify and identify a second 30-kDa C3-binding protein, HupB. These data demonstrate that HbhA is required for the in vivo but not the in vitro survival of M. tuberculosis and that HbhA is not necessary for the adherence of M. tuberculosis to the macrophage-like cells used in these studies. The expression of two proteins that bind human C3 may aid in the efficient binding of M. tuberculosis to complement receptors for uptake into mononuclear cells, or may influence other aspects of the host-parasite interaction. ^