953 resultados para RAT EPITROCHLEARIS MUSCLE
Resumo:
The helminth fauna from 124 water-rats, Hydromys chrysogaster, collected from 33 localities in Queensland was analysed. A total of 45 species of helminths was found, comprising 2 acanthocephalans, 2 cestodes, 13 nematodes and 28 trematodes. The helminth community of the water-rats in the region north of latitude 18 degrees (far north) was different from that of water-rats south of 18 degrees (central); Sorensen's Index 45.8% similarity, whereas Holmes and Podesta's Index gave 32.1% similarity. Comparisons with data from water-rats from southern and Tasmanian regions showed that they were different from each other and from both Queensland regions. The helminth communities were characterised by high diversity, dominated by trematodes in the central and Tasmanian regions, but with nematodes becoming more prominent in the far northern and southern regions. No core or secondary species were found in the Queensland helminth communities, the southern community was suggestive of a bimodal distribution and the Tasmanian had two core species. A checklist of helminth species occurring in water-rats from eastern Australia is provided.
Resumo:
We aimed to investigate the vascular effects of hyperhomocysteinemia (HHcy) on carotid arteries from young and adult rats. With this purpose young and adult rats received a solution of DL-homocysteine-thiolactone (1 g/kg body weight/day) in the drinking water for 7, 14 and 28 days. Increase on plasma homocysteine occurred in young and adult rats treated with DL-homocysteine-thiolactone in all periods. Vascular reactivity experiments using standard muscle bath procedures showed that HHcy enhanced the contractile response of endothelium-intact, carotid rings to phenylephrine in both young and adult rats. However, in young rats, the increased phenylephrine-induced contraction was observed after hyperhomocysteinemia for 14 and 28 days, whereas in adult rats this response was already apparent after 7 day treatment. HHcy impaired acetylcholine-induced relaxation in arteries from adult but not young rats. The contraction induced by phenylephrine in carotid arteries in the presence of Y-27632 was reversed to control values in arteries from young but not adult rats with hyperhomocysteinemia. HHcy did not alter the contraction induced by CaCl(2) in carotid arteries from young rats, but enhanced CaCl(2)-induced contraction in the arteries from adult rats. HHcy increased the basal levels of superoxide anion in arteries from both groups. Finally, HHcy decreased the basal levels of nitrite in arteries from adult but not young rats. The major new finding of the present work is that arteries from young rats are more resistant to vascular changes evoked by HHcy than arteries from adult rats. Also, we verified that the enhanced vascular response to phenylephrine observed in carotid arteries of DL-homocysteine thiolactone-treated rats is mediated by different mechanisms in young and adult rats. (C) 2010 Published by Elsevier Inc.
Resumo:
The technique of polymerase chain reaction (PCR) differential display was used to detect alterations in gene expression after chronic alcohol administration. Male Wistar rats were treated with ethanol vapor for 14 days. The cDNA generated from mRNA isolated from the hippocampi of ethanol-treated and control animals was compared by PCR differential display. A differentially expressed cDNA fragment was used to screen mRNA samples by Northern analysis. The level of a mRNA was significantly elevated (x 2.5) in the hippocampus, but not the cortex of alcohol-treated rats up to 48 hr after withdrawal. Sequence analysis of the cDNA fragment revealed an almost perfect homology to rat mitochondrial NADH dehydrogenase subunit 4 mRNA. The selective induction of this mRNA in alcohol-treated rat brain areas suggests altered metabolic processes and possible dysfunction of the mitochondria. The technique of PCR differential display may prove useful in further analysis of gene expression during alcohol dependence and withdrawal.
Resumo:
The aims of this study were to characterize the recently cloned rat norepinephrine transporter (NET) in more detail and in particular to study possible species differences in its pharmacological properties compared with the human and bovine NETs. The study was carried out by measuring the uptake of [3H]norepinephrine in COS-7 cells expressing the NET after transient transfection with rat, human, or bovine NET cDNA. There were small but significant differences between the rat NET and the human or bovine NETs with respect to the affinities of sodium ions (greater for rat than for bovine) of the substrates norepinephrine, epinephrine, and 1-methyl-4-phenylpyridinium (greater for human than for rat), and of the inhibitor cocaine (greater for human and bovine than for rat), whereas the affinities of dopamine and of most inhibitors, including tricyclic antidepressants, showed no species differences. The fact that the affinities for some substrates, cocaine and sodium ions exhibited small but significant interspecies differences among the rat, human, and bovine NETs suggests that ligand recognition, the translocation process, and sodium ion dependence are influenced differentially by just a few amino acid exchanges in the primary sequences of the transporters. On the other hand, the lack of any major differences in the pharmacological properties of the rat, human, and bovine NETs in this study suggests that data obtained in previous studies on rat tissues and bovine cells can be extrapolated, in all except the most quantitative analyses, to the properties of the human NET.
Resumo:
We have previously shown that human leukaemia inhibitory factor (hLIF) inhibits perivascular cuff-induced neointimal formation in the rabbit carotid artery. Since nitric oxide (NO) is a known inhibitor of smooth muscle growth, NO synthase (NOS) activity in the presence of hLIF was examined in vivo and in vitro. In rabbit aortic smooth muscle cell (SMC) culture, significant NOS activity was observed at 50 pg/ml hLIF, with maximal activity at 5 ng/ml. In the presence of the NOS inhibitor L-NAME, hLIF-induced activation of NOS was greatly decreased, however it was still 63-fold higher than in control (p < 0.05). SMC-DNA synthesis was significantly reduced (-47%) following incubation with hLIF plus L-arginine, the substrate required for NO production (p < 0.05), with no effect observed in the absence of L-arginine. Silastic cuff placement over the right carotid artery of rabbits resulted in a neointima 19.3 +/- 5.4% of total wall cross-sectional area, which was increased in the presence of L-NAME (27.0 +/- 2.0%; p < 0.05) and reduced in the presence of L-arginine (11.3 +/- 2.0%; p < 0.05). The effect of L-arginine was ameliorated by co-administration of L-NAME (16.4 +/- 1.5%). However, administration of L-NAME with hLIF had no effect on the potent inhibition of neointimal formation by hLIF (3.2 +/- 2.5 vs. 2.1 +/- 5.4%, respectively). Similarly, with hLIF administration, NOS activity in the cuffed carotid increased to 269.0 +/- 14.0% of saline-treated controls and remained significantly higher with coadministration of L-NAME (188.5 +/- 14.7%). These results indicate that hLIF causes superinduction of NO by SMC, and that it is, either partially or wholly, through this mechanism that hLIF is a potent inhibitor of neointimal formation in vivo and of smooth muscle proliferation in vitro.
Resumo:
The outflow-concentration-time profiles for lignocaine (lidocaine) and its metabolites have been measured after bolus impulse administration of [C-14]lignocaine into the perfused rat liver. Livers from female Sprague-Dawley rats were perfused in a once-through fashion with red-blood-cell-free Krebs-Henseleit buffer containing 0 or 2% bovine serum albumin. Perfusate flow rates of 20 and 30 mL min(-1) were used and both normal and retrograde flow directions were employed. Significant amounts of metabolite were detected in the effluent perfusate soon after lignocaine injection. The early appearance of metabolite contributed to bimodal outflow profiles observed for total C-14 radioactivity. The lignocaine outflow profiles were well characterized by the two-compartment dispersion model, with efflux rate << influx rate. The profiles for lignocaine metabolites were also characterized in terms of a simplified two-compartment dispersion model. Lignocaine was found to be extensively metabolized under the experimental conditions with the hepatic availability ranging between 0.09 and 0.18. Generally lignocaine and metabolite availability showed no significant change with alterations in perfusate flow rate from 20 to 30 mt min(-1) or protein content from 0 to 2%. A significant increase in lignocaine availability occurred when 1200 mu M unlabelled lignocaine was added to the perfusate. Solute mean transit times generally decreased with increasing flow rate and with increasing perfusate protein content. The results confirm that lignocaine pharmacokinetics in the liver closely follow the predictions of the well-stirred model. The increase in lignocaine availability when 1200 mu M unlabelled lignocaine was added to the perfusate is consistent with saturation of the hydroxylation metabolic pathways of lignocaine metabolism.
Resumo:
Insulin-like growth factor-I (IGF-I) is a preiotrophic polypeptide which appears to have roles both as a circulating endocrine hormone and as a locally synthesized paracrine or autocrine tissue factor. IGF-I plays a major role in regulating the growth of cells in vivo and in vitro and initiates metabolic and mitogenic processes in a wide variety of cell types by binding to specific type I receptors in the plasma membrane, In this study, we report the distribution of IGF-I receptors in odontogenic cells at the ultrastructural level using the high resolution protein A-gold technique, In the pre-secretory stage, very little gold label was visible over the ameloblasts and odontoblasts, During the secretory stage the label was mostly seen in association with the cell membranes and endoplasmic reticulum of the ameloblasts. Lysosome-like elements in the post-secretory stage were labelled as well as multivesicular dense bodies, Very little labelling was encountered in the ameloblasts in the transitional stage, where apoptotic bodies were clearly visible, The maturation stage also exhibited labelling of the secretory-like granules in the distal surface. The presence of gold particles over the plasma membrane is an indication that IGF-I receptor is a membrane-bound receptor. Furthermore, the intracellular distribution of the label over the endoplasmic reticulum supports the local synthesis of the IGF-I receptor. The absence of labelling over the transitional ameloblasts suggests that the transitional stage may require the non-expression of IGF-I as a prerequiste or even a trigger for apoptosis.
Resumo:
Purpose. To examine the postnatal development of major histocompatibility complex (MHC) class II-positive dendritic cells (DC) in the iris of the normal rat eye. Methods. Single-and double-color immunomorphologic studies were performed on whole mounts prepared from rat iris taken at selected postnatal ages (2 to 3 days to 78 weeks). Immunopositive cells were enumerated, using a quantitative light microscope, and MHC class II expression on individual cells was assessed by microdensitometric analysis. Results. Major histocompatibility class II-positive DCs in the iris developed in an age-dependent manner and reached adult-equivalent density and structure at approximately 10 weeks of age, considerably later than previously described in other DC populations in the rat. In contrast, the anti-rat DC monoclonal antibody OX62 revealed a population of cells present at adult-equivalent levels as early as 3 weeks after birth. Dual-color immunostaining and microdensitometric analysis demonstrated that during postnatal growth, development of the network of MHC class II-positive DCs was a consequence of the progressive increase in expression of MHC class II antigen by OX62-positive cells. Conclusions. During postnatal growth, the DC population of the iris develops initially as an OX62-positive-MHC class II-negative population, which then develops increasing MHC class II expression in situ and finally resembles classic DC populations in other tissue sites. Maturation of the iris DC population is temporally delayed compared with time to maturation in other tissue sites in the rat.
Resumo:
Egr-1 and related proteins are inducible transcription factors within the brain recognizing the same consensus DNA sequence. Three Egr DNA-binding activities were observed in regions of the naive rat brain. Egr-1 was present in all brain regions examined. Bands composed, at least in part, of Egr-2 and Egr-3 were present in different relative amounts in the cerebral cortex, striatum, hippocampus, thalamus, and midbrain. All had similar affinity and specificity for the Egr consensus DNA recognition sequence. Administration of the convulsants NMDA, kainate, and pentylenetetrazole differentially induced Egr-1 and Egr-2/3 DNA-binding activities in the cerebral cortex, hippocampus, and cerebellum. All convulsants induced Egr-1 and Egr-2 immunoreactivity in the cerebral cortex and hippocampus. These data indicate that the members of the Egr family are regulated at different levels and may interact at promoters containing the Egr consensus sequence to fine tune a program of gene expression resulting from excitatory stimuli.
Resumo:
It is known that physical activity triggers changes in the central nervous system Adult rats, trained on treadmills for 4 weeks, and a group of sedentary rats was submitted to contuse moderate spinal cord injury A group of sedentary rats was submitted to a sham operation The trained group continued running on treadmill after lesion for 4 weeks Motor behavior evaluated by BBB score was smaller in the sedentary group compared to the trained rats by 7 days after lesion Computerized activity monitor showed clear-cut differences in spontaneous motor parameters in trained rats only before lesion After surgery, sedentary rats showed changes in motor parameters but not in later periods of analysis Animals were euthanized by 28 days after surgery, and their spinal cords were processed for Nissl staining and immunohistochemistry The number of the remaining neurons and the lesion areal and lesion volume fractions were obtained by stereological method The number of the remaining neurons did not change after training Lesion volume and lesion areal fraction per section were smaller in the trained group Lesion index was more pronounced in the sedentary group Microdensitometric image analysis demonstrated a microglial reaction, astroglial activation, and glial FGF-2 production more pronounced in the spinal cord of sedentary animals GAP-43 was higher in caudal levels of contusion in the sedentary group In conclusion, treadmill running may favor a better functional recovery in the acute period after spinal cord lesion and wound repair processes leading to neuroprotection (C) 2010 Elsevier B V All rights reserved
Resumo:
Objective To assess MHC I and II expressions in muscle fibres of juvenile dermatomyositis (JDM) and compare with the expression in polymyositis (PM), dermatomyositis (DM) and dystrophy. Patients and methods Forty-eight JDM patients and 17 controls (8 PM, 5 DM and 4 dystrophy) were studied. The mean age at disease onset was 7.1 +/- 3.0 years and the mean duration of weakness before biopsy was 9.4 +/- 12.9 months. Routine histochemistry and immunohistochemistry (StreptABComplex/HRP) for MHC I and II (Dakopatts) were performed on serial frozen muscle sections in all patients. Mann-Whitney, Kruskal Wallis, chi-square and Fisher`s exact statistical methods were used. Results MHC I expression was positive in 47 (97.9%) JDM cases. This expression was observed independent of time of disease corticotherapy previous to muscle biopsy and to the grading of inflammation observed in clinical, laboratorial and histological parameters. The expression of MHC I was similar on JDM, PM and DM, and lower in dystrophy. On the other hand, MHC II expression was positive in just 28.2% of JDM cases was correlated to histological features as inflammatory infiltrate, increased connective tissue and VAS for global degree of abnormality (p < 0.05). MCH II expression was similar in DM/PM and lower in JDM and dystrophy, and it was based on the frequency of positive staining rather than to the degree of the MCH II expression. Conclusions MHC I expression in muscle fibres is a premature and late marker of JDM patient independent to corticotherapy, and MHC II expression was lower in JDM than in PM and DM.
Resumo:
Neuropeptide Y (NPY) is an important neuromodulator found in central and peripheral neurons. NPY was investigated in the peripheral auditory pathway of conventional housed rats and after nontraumatic sound stimulation in order to localize the molecule and also to describe its response to sound stimulus. Rats from the stimulation experiment were housed in monitored sound-proofed rooms. Stimulated animals received sound stimuli (pure tone bursts of 8 kHz, 50 ms duration presented at a rate of 2 per second) at an intensity of 80 dB sound pressure level for 1 hr per day during 7 days. After euthanizing, rat cochleae were processed for one-color immunohistochemistry. The NPY immunoreactivity was detected in inner hair cells (IHC) and also in pillar and Deiters` cells of organ of Corti, and in the spiral ganglion putative type I (1,009 m3) and type II (225 m3) neurons. Outer hair cells (OHC) showed light immunoreaction product. Quantitative microdensitometry showed strong and moderate immunoreactions in IHC and spiral ganglion neurons, respectively, without differences among cochlear turns. One week of acoustic stimulation was not able to induce changes in the NPY immunoreactivity intensity in the IHC of cochlea. However, stimulated rats showed an overall increase in the number of putative type I and type II NPY immunoreactive spiral ganglion neurons with strong, moderate, and weak immunolabeling. Localization and responses of NPY to acoustic stimulus suggest an involvement of the neuropeptide in the neuromodulation of afferent transmission in the rat peripheral auditory pathway.
Resumo:
Objective: To analyze the antiangiogenic effects of the selective cyclooxygenase-2 (COX-2) inhibitor parecoxib on the growth of endometrial implants in a rat model of peritoneal endometriosis. Design: Pharmacologic interventions in an experimental model of peritoneal endometriosis. Setting: Research laboratory in the Federal University of Rio de Janeiro. Animal(s): Twenty female Sprague-Dawley rats with experimentally induced endometriosis. Intervention(s): After implantation and establishment of autologous endometrium onto the peritoneum abdominal wall, rats were randomized into groups and treated with parecoxib or the vehicle by IM injection for 30 days. Main Outcome Measure(s): Vascular density, the expression of vascular endothelial growth factor (VEGF) and its receptor Flk-1, the distribution of activated macrophages, the expression of COX-2, and the prostaglandin concentration in the endometriotic lesions treated with parecoxib were analyzed. Result(s): The treatment significantly decreased the implant size, and histologic examination indicated mostly atrophy and regression. A reduction in microvessel density and in the number of macrophages, associated with decreased expression of VEGF and Flk-1, also were observed. The treatment group showed a low concentration of prostaglandin E(2). Conclusion(s): These results suggest that the use of COX-2 selective inhibitors could be effective to suppress the establishment and growth of endometriosis, partially through their antiangiogenic activity. (Fertil Steril (R) 2010; 93: 2674-9. (C) 2010 by American Society for Reproductive Medicine.)
Resumo:
Objective To study increases in electromyographic (EMG) response from the right and left rectus femoris muscles of individuals with long-term cervical spinal cord injuries after EMG biofeedback treatment. Design Repeated measure trials compared EMG responses before and after biofeedback treatment in patients with spinal cord injuries. Main outcome measures The Neuroeducator was used to analyse and provide feedback of the EMG signal and to measure EMG response. Setting Department of Traumatic Orthopaedics, School of Medicine, University of Sao Paulo, Brazil. Participants Twenty subjects (three men and 17 women), between 21 and 49 years of age, with incomplete spinal cord injury at level C6 or higher (range C2 to C6). Of these subjects, 10 received their spinal cord injuries from motor vehicle accidents, one from a gunshot, five from diving, three from falls and one from spinal disc herniation. Results Significant differences were found in the EMG response of the right rectus femoris muscle between pre-initial (T1), post-initial (T2) and additional (T3) biofeedback treatment with the subjects in a sitting position [mean (standard deviation) T1: 26 mu V (29); T2: 67 mu V (50); T3: 77 mu V (62)]. The mean differences and 95% confidence intervals for these comparisons were as follows: T1 to T2, -40.7 (-53.1 to -29.4); T2 to T3, -9.6 (-26.1 to 2.3). Similar differences were found for the left leg in a sitting position and for both legs in the sit-to-stand condition. Conclusions The EMG responses obtained in this study showed that treatment involving EMG biofeedback significantly increased voluntary EMG responses from right and left rectus femoris muscles in individuals with spinal cord injuries. (C) 2010 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.