962 resultados para Récepteur CD4
Resumo:
RATIONALE: Tuberculosis (TB) remains a leading cause of death, and the role of T-cell responses to control Mycobacterium tuberculosis infections is well recognized. Patients with latent TB infection develop strong IFN-gamma responses to the protective antigen heparin-binding hemagglutinin (HBHA), whereas patients with active TB do not. OBJECTIVES: We investigated the mechanism of this difference and evaluated the possible involvement of regulatory T (Treg) cells and/or cytokines in the low HBHA T-cell responses of patients with active TB. METHODS: The impact of anti-transforming growth factor (TGF)-beta and anti-IL-10 antibodies and of Treg cell depletion on the HBHA-induced IFN-gamma secretion was analyzed, and the Treg cell phenotype was characterized by flow cytometry. MEASUREMENTS AND MAIN RESULTS: Although the addition of anti-TGF-beta or anti-IL-10 antibodies had no effect on the HBHA-induced IFN-gamma secretion in patients with active TB, depletion of CD4(+)CD25(high)FOXP3(+) T lymphocytes resulted in the induction by HBHA of IFN-gamma concentrations that reached levels similar to those obtained for latent TB infection. No effect was noted on the early-secreted antigen target-6 or candidin T-cell responses. CONCLUSIONS: Specific CD4(+)CD25(high)FOXP3(+) T cells depress the T-cell-mediated immune responses to the protective mycobacterial antigen HBHA during active TB in humans.
Resumo:
RATIONALE: Tuberculosis (TB) remains a major cause of mortality. A better understanding of the immune responses to mycobacterial antigens may be helpful to develop improved vaccines and diagnostics. OBJECTIVE: The mycobacterial antigen heparin-binding-hemagglutinin (HBHA) induces strong interferon-gamma (IFN-gamma) responses by circulating lymphocytes from Mycobacterium tuberculosis latently infected subjects, and low responses associated with CD4(+) regulatory T (Treg) cells in TB patients. Here, we investigated HBHA-specific IFN-gamma responses at the site of the TB disease. METHODS: Bronchoalveolar lavages, pleural fluids and blood were prospectively collected from 61 patients with a possible diagnosis of pulmonary and/or pleural TB. HBHA-specific IFN-gamma production was analyzed by flow cytometry and ELISA. The suppressive effect of pleural Treg cells was investigated by depletion experiments. MEASUREMENTS AND MAIN RESULTS: The percentages of HBHA-induced IFN-gamma(+) alveolar and pleural lymphocytes were higher for pulmonary (P<0.0001) and for pleural (P<0.01) TB than for non-TB controls. Local CD4(+) and CD8(+) T cells produced the HBHA-specific IFN-gamma. This local secretion was not suppressed by Treg lymphocytes, contrasting with previously reported data on circulating lymphocytes. CONCLUSION: TB patients display differential effector and regulatory T cell responses to HBHA in local and circulating lymphocytes with a predominant effector CD4(+) and CD8(+) response locally, compared to a predominant Treg response among circulating lymphocytes. These findings may be helpful for the design of new vaccines against TB, and the detection of HBHA-specific T cells at the site of the infection may be a promising tool for the rapid diagnosis of active TB.
Resumo:
To better understand vaccine-induced protection and its potential failure in light of recent whooping cough resurgence, we evaluated quantity as well as quality of memory T cell responses in B. pertussis-vaccinated preadolescent children. Using a technique based on flow cytometry to detect proliferation, cytokine production and phenotype of antigen-specific cells, we evaluated residual T cell memory in a cohort of preadolescents who received a whole-cell pertussis (wP; n=11) or an acellular pertussis vaccine (aP; n=13) during infancy, and with a median of 4 years elapsed from the last pertussis booster vaccine, which was aP for all children. We demonstrated that B. pertussis-specific memory T cells are detectable in the majority of preadolescent children several years after vaccination. CD4(+) and CD8(+) T cell proliferation in response to pertussis toxin and/or filamentous hemagglutinin was detected in 79% and 60% of the children respectively, and interferon-γ or tumor necrosis factor-α producing CD4(+) T cells were detected in 65% and 53% of the children respectively. Phenotyping of the responding cells showed that the majority of antigen-specific cells, whether defined by proliferation or cytokine production, were CD45RA(-)CCR7(-) effector memory T cells. Although the time since the last booster vaccine was significantly longer for wP-compared to aP-vaccinated children, their proliferation capacity in response to antigenic stimulation was comparable, and more children had a detectable cytokine response after wP- compared to aP-vaccination. This study supports at the immunological level recent epidemiological studies indicating that infant vaccination with wP induces longer lasting immunity than vaccination with aP-vaccines.
Resumo:
Background: Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) remains a poorly understood complication in HIV-TB co-infected patients initiating antiretroviral therapy (ART). The role of the innate immune system in TB-IRIS is becoming increasingly apparent, however the potential involvement in TB-IRIS of a leaky gut and proteins that interfere with TLR stimulation by binding PAMPs has not been investigated before. Here we aimed to investigate the innate nature of the cytokine response in TB-IRIS and to identify novel potential biomarkers. Methods: From a large prospective cohort of HIV-TB co-infected patients receiving TB treatment, we compared 40 patients who developed TB-IRIS during the first month of ART with 40 patients matched for age, sex and baseline CD4 count who did not. We analyzed plasma levels of lipopolysaccharide (LPS)-binding protein (LBP), LPS, sCD14, endotoxin-core antibody, intestinal fatty acid-binding protein (I-FABP) and 18 pro-and anti-inflammatory cytokines before and during ART. Results: We observed lower baseline levels of IL-6 (p = 0.041), GCSF (p = 0.036) and LBP (p = 0.016) in TB-IRIS patients. At IRIS event, we detected higher levels of LBP, IL-1RA, IL-4, IL-6, IL-7, IL-8, G-CSF (p ≤ 0.032) and lower I-FABP levels (p = 0.013) compared to HIV-TB co-infected controls. Only IL-6 showed an independent effect in multivariate models containing significant cytokines from pre-ART (p = 0.039) and during TB-IRIS (p = 0.034). Conclusion: We report pre-ART IL-6 and LBP levels as well as IL-6, LBP and I-FABP levels during IRIS-event as potential biomarkers in TB-IRIS. Our results show no evidence of the possible contribution of a leaky gut to TB-IRIS and indicate that IL-6 holds a distinct role in the disturbed innate cytokine profile before and during TB-IRIS. Future clinical studies should investigate the importance and clinical relevance of these markers for the diagnosis and treatment of TB-IRIS. Copyright: © 2013 Goovaerts et al.
Resumo:
Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) remains a poorly understood complication in HIV-TB patients receiving antiretroviral therapy (ART). TB-IRIS could be associated with an exaggerated immune response to TB-antigens. We compared the recovery of IFNγ responses to recall and TB-antigens and explored in vitro innate cytokine production in TB-IRIS patients.
Resumo:
Objectives: One third of the world population is considered latently infected with Mycobacterium tuberculosis(LTBI) and sterilizing this reservoir of bacteria that may reactivate is required for tuberculosis (TB) elimination. Thegroup of individuals with LTBI is heterogeneous with some of them being more at risk to develop TB disease thanothers. Improved diagnosis of subjects with LTBI is needed, allowing to differentiate subjects with LTBI from thosewith active TB, and to select among LTBI subjects those who are more at risk to develop active TB. We havecharacterized at the cellular level both the quantitative and qualitative T cell responses to different mycobacterialantigens in selected populations of infected subjects in order to identify new biomarkers that could help to identify M.tuberculosis-infected subjects and to stratify them in risk groups for reactivation of the infection.Methods: Lymphoblast frequencies and cytokine production (IFN-γ, TNF-α, IL-2) among CD4+ and CD8+ T cellswere analyzed by flow cytometry after in vitro stimulation with the latency antigen heparin-binding haemagglutinin(HBHA) or early-secreted antigen Target-6 (ESAT-6) of peripheral blood mononuclear cells from clinically wellcharacterized M. tuberculosis-infected humans (28 LTBI, 22 TB disease,12 controls). The LTBI group definedaccording to the Center for Disease Control guidelines was subdivided into QuantiFERON-TB Gold in-Tube (QFT)positive and negative subgroups.Results: Similar to TB patients, QFT+ LTBI subjects had higher proportions of HBHA-induced TNF-αsingle+ CD4+lymphocytes than QFT- LTBI subjects (p<0.05). Compared to LTBI subjects, TB patients had higher frequencies ofESAT-6-induced CD8+ lymphoblasts (p<0.001), higher proportions of ESAT-6-induced IFN-γ+TNF-α+ CD4+ Tlymphocytes (p<0.05), and lower proportions of HBHA-induced IFN-γ+TNF-α+IL-2+ (p<0.05) CD4+ T lymphocytes.Conclusions: These data provide new biomarkers to discriminate active TB from LTBI, and more interestingly,help to identify LTBI subjects with increased likelihood to develop TB disease.
Resumo:
OBJECTIVES: To evaluate the immune reconstitution in HIV-1-infected children in whom highly active antiretroviral therapy (HAART) controlled viral replication and to assess the existence of a relation between the magnitude of this restoration and age. METHODS: All HIV-1-infected children in whom a new HAART decreased plasma viral load below 400 copies/ml after 3 months of therapy were prospectively enrolled in a study of their immune reconstitution. Viral load, lymphocyte phenotyping, determination of CD4+ and CD8+ T cell receptor repertoires and proliferative responses to mitogens and recall antigens were assessed every 3 months during 1 year. RESULTS: Nineteen children were evaluated. Naive and memory CD4+ percentages were already significantly increased after 3 months of HAART. In contrast to memory CD4+ percentages, naive CD4+ percentages continued to rise until 12 months. Age at baseline was inversely correlated with the magnitude of the rise in naive CD4+ cells after 3, 6 and 9 months of therapy but not after 12 months. Although memory and activated CD8+ cells were already decreasing after 3 months, abnormalities of the CD8 T cell receptor repertoire and activation of CD8+ cells persisted at 1 year. HAART increased the response to mitogens as early as 3 months after starting therapy. CONCLUSIONS: In children the recovery of naive CD4+ cells occurs more rapidly if treatment is started at a younger age, but after 1 year of viral replication control, patients of all ages have achieved the same level of restoration. Markers of chronic activation in CD8+ cells persist after 1 year of HAART.
Resumo:
Case Reports
Resumo:
CD4+ T cells are prominent effector cells in controlling Mycobacterium tuberculosis (Mtb) infection but may also contribute to immunopathology. Studies probing the CD4+ T cell response from individuals latently infected with Mtb or patients with active tuberculosis using either small or proteome-wide antigen screens so far revealed a multi-antigenic, yet mostly invariable repertoire of immunogenic Mtb proteins. Recent developments in mass spectrometry-based proteomics have highlighted the occurrence of numerous types of post-translational modifications (PTMs) in proteomes of prokaryotes, including Mtb. The well-known PTMs in Mtb are glycosylation, lipidation, or phosphorylation, known regulators of protein function or compartmentalization. Other PTMs include methylation, acetylation, and pupylation, involved in protein stability. While all PTMs add variability to the Mtb proteome, relatively little is understood about their role in the anti-Mtb immune responses. Here,we reviewMtb protein PTMs and methods to assess their role in protective immunity against Mtb. © 2014 van Els, Corbière, Smits, vanGaans-van den Brink, Poelen, Mascart, Meiring and Locht.
Resumo:
SWAP-70-like adapter of T cells (SLAT) is a novel guanine nucleotide exchange factor for Rho GTPases that is upregulated in Th2 cells, but whose physiological function is unclear. We show that SLAT-/- mice displayed a developmental defect at one of the earliest stages of thymocyte differentiation, the double-negative 1 (DN1) stage, leading to decreased peripheral T cell numbers. SLAT-/- peripheral CD4+ T cells demonstrated impaired TCR/CD28-induced proliferation and IL-2 production, which was rescued by the addition of exogenous IL-2. Importantly, SLAT-/- mice were grossly impaired in their ability to mount not only Th2, but also Th1-mediated lung inflammatory responses, as evidenced by reduced airway neutrophilia and eosinophilia, respectively. Levels of Th1 and Th2 cytokine in the lungs were also markedly reduced, paralleling the reduction in pulmonary inflammation. This defect in mounting Th1/Th2 responses, which was also evident in vitro, was traced to a severe reduction in Ca2+ mobilization from ER stores, which consequently led to defective TCR/CD28-induced translocation of nuclear factor of activated T cells 1/2 (NFATc1/2). Thus, SLAT is required for thymic DN1 cell expansion, T cell activation, and Th1 and Th2 inflammatory responses.
Resumo:
Interluekin-23 (IL-23) is a pro-inflammatory cytokine critical to the regulation of innate and adaptive immune responses. The main role for this cytokine is in the proliferation and differentiation of the IL-17 producing CD4 T helper cell, Th17. Virus infection deregulates IL-23 expression and function, but little is known about the mechanism behind this phenomena. Here, I demonstrate a reduction of Toll like receptor (TLR) ligand-induced IL-23 expression in lymphocytic choriomeningitis virus (LCMV)-infected bone marrow-derived dendritic cells (BMDCs), indicating that a function of these cells is disrupted during virus infection. I propose a mechanism of TLR ligand-induced IL-23 expression inhibition upon LCMV infection via the deactivation of p38, AP-1, and NF-κB. Further analysis revealed a direct relationship between LCMV infection with the IL-10 and SOCS3 expression. To understand IL-23 function, I characterized IL-23-induced JAK/STAT signalling pathway and IL-23 receptor expression on human CD4 T cells. My results demonstrate that IL-23 induces activation of p-JAK2, p-Tyk2, p-STAT1, p-STAT3, and p-STAT4 in CD4 T cells. For the first time I show that IL-23 alone induces the expression of its own receptor components, IL-12Rβ1 and IL-23Rα, in CD4 T cells. Blocking JAK2, STAT1, and STAT3 activation with specific inhibitors detrimentally effected expression of IL-23 receptor demonstrating that activation of JAK/STAT signalling is important for IL-23 receptor expression. I also addressed the effect of viral infection on IL-23 function and receptor expression in CD4 T cells using cells isolated from HIV positive individuals. These studies were based on earlier reports that the expression of IL-23 and the IL-23 receptor are impaired during HIV infection. I demonstrate that the phosphorylation of JAK2, STAT1, and STAT3 induced by IL-23, as well as IL-23 receptor expression are deregulated in CD4 T cells isolated from HIV positive individuals. This study has furthered the understanding of how the expression and function of IL-23 is regulated during viral infections.
Resumo:
Langerin is a C-type lectin expressed by a subset of dendritic leukocytes, the Langerhans cells (LC). Langerin is a cell surface receptor that induces the formation of an LC-specific organelle, the Birbeck granule (BG). We generated a langerin(-/-) mouse on a C57BL/6 background which did not display any macroscopic aberrant development. In the absence of langerin, LC were detected in normal numbers in the epidermis but the cells lacked BG. LC of langerin(-/-) mice did not present other phenotypic alterations compared to wild-type littermates. Functionally, the langerin(-/-) LC were able to capture antigen, to migrate towards skin draining lymph nodes, and to undergo phenotypic maturation. In addition, langerin(-/-) mice were not impaired in their capacity to process native OVA protein for I-A(b)-restricted presentation to CD4(+) T lymphocytes or for H-2K(b)-restricted cross-presentation to CD8(+) T lymphocytes. langerin(-/-) mice inoculated with mannosylated or skin-tropic microorganisms did not display an altered pathogen susceptibility. Finally, chemical mutagenesis resulted in a similar rate of skin tumor development in langerin(-/-) and wild-type mice. Overall, our data indicate that langerin and BG are dispensable for a number of LC functions. The langerin(-/-) C57BL/6 mouse should be a valuable model for further functional exploration of langerin and the role of BG.
Resumo:
The checkpoint in cell development that controls successful T cell receptor (TCR) gene rearrangements remains poorly characterized. Using mice expressing a reporter gene 'knocked into' the Tcrd constant region gene, we have characterized many of the events that mark the life of early cells in the adult thymus. We identify the developmental stage during which the Tcrd locus 'opens' in early T cell progenitors and show that a single checkpoint controls cell development during the penultimate CD4-CD8- stage. Passage through this checkpoint required the assembly of TCR heterodimers on the cell surface and signaling via the Lat adaptor protein. In addition, we show that selection triggered a phase of sustained proliferation similar to that induced by the pre-TCR.
Resumo:
Skin-draining LN contain several phenotypically distinguishable DC populations, which may be immature or mature. Mature DC are generally considered to have lost the capacity to acquire and present newly encountered Ag. Using antibody-opsonized liposomes as Ag carriers, we show that mature DC purified from skin explants are able to efficiently capture liposomes, process Ag encapsulated within them and activate Ag-specific CD4(+) T cells. Explant DC from mice with Langerhans cells (LC) expressing the primate diphtheria toxin receptor that were exposed to diphtheria toxin in vivo presented Ag as well as explant DC from wild-type mice, indicating that LC are not required and dermal DC are probably responsible for this presentation. We further show that all DC subtypes from LN that capture opsonized Ag are capable of cross-presenting it to CD8(+) T cells. Induction of additional maturation in vivo by LPS or treatment with double-stranded RNA did not alter the Ag presentation capacity of the skin or LN DC subtypes. These results suggest that mature DC present in skin-draining LN may play an important role in the induction of primary and/or secondary immune responses against Ag delivered to the LN that they take up by receptor-mediated endocytosis.
Resumo:
Gene gun immunization, i.e., bombardment of skin with DNA-coated particles, is an efficient method for the administration of DNA vaccines. Direct transfection of APC or cross-presentation of exogenous Ag acquired from transfected nonimmune cells enables MHC-I-restricted activation of CD8(+) T cells. Additionally, MHC-II-restricted presentation of exogenous Ag activates CD4(+) Th cells. Being the principal APC in the epidermis, Langerhans cells (LC) seem ideal candidates to accomplish these functions. However, the dependence on LC of gene gun-induced immune reactions has not yet been demonstrated directly. This was primarily hampered by difficulties to discriminate the contributions of LC from those of other dermal dendritic cells. To address this problem, we have used Langerin-diphtheria toxin receptor knockin mice that allow for selective inducible ablation of LC. LC deficiency, even over the entire duration of experiments, did not affect any of the gene gun-induced immune functions examined, including proliferation of CD4(+) and CD8(+) T cells, IFN-gamma secretion by spleen cells, Ab production, CTL activity, and development of protective antitumor immunity.