886 resultados para Query Refinement
Resumo:
This report gives a detailed discussion on the system, algorithms, and techniques that we have applied in order to solve the Web Service Challenges (WSC) of the years 2006 and 2007. These international contests are focused on semantic web service composition. In each challenge of the contests, a repository of web services is given. The input and output parameters of the services in the repository are annotated with semantic concepts. A query to a semantic composition engine contains a set of available input concepts and a set of wanted output concepts. In order to employ an offered service for a requested role, the concepts of the input parameters of the offered operations must be more general than requested (contravariance). In contrast, the concepts of the output parameters of the offered service must be more specific than requested (covariance). The engine should respond to a query by providing a valid composition as fast as possible. We discuss three different methods for web service composition: an uninformed search in form of an IDDFS algorithm, a greedy informed search based on heuristic functions, and a multi-objective genetic algorithm.
Resumo:
Recently, research projects such as PADLR and SWAP have developed tools like Edutella or Bibster, which are targeted at establishing peer-to-peer knowledge management (P2PKM) systems. In such a system, it is necessary to obtain provide brief semantic descriptions of peers, so that routing algorithms or matchmaking processes can make decisions about which communities peers should belong to, or to which peers a given query should be forwarded. This paper proposes the use of graph clustering techniques on knowledge bases for that purpose. Using this clustering, we can show that our strategy requires up to 58% fewer queries than the baselines to yield full recall in a bibliographic P2PKM scenario.
Resumo:
Krishin Vigyan Kendras-KVKs (Farm Science Centres) have been established by the Indian Council of Agricultural Research in 569 districts. The trust areas of KVKs are refinement and demonstration of technologies, and training of farmers and extension functionaries. Imparting vocational trainings in agriculture and allied fields for the rural youth is one of its mandates. The study was undertaken to do a formative and summative (outcome and impact) evaluation of the beekeeping and mushroom growing vocational training programmes in the Indian state of Punjab. One-group pre and post evaluation design was employed for conducting a formative and outcome evaluation. The knowledge tests were administered to 35 beekeeping and 25 mushroom cultivation trainees, before and after the training programmes organized in 2004. The trainees significantly gained in knowledge. A separate sample of 640 trainees, trained prior to 2004, was selected for finding the adoption status. Out of 640, a sample of 200 was selected by proportionate sampling technique out of three categories, namely: non-adopters, discontinued-adopters and continued-adopters for evaluating the long-term impact of these training programmes. Ex-post-facto one-shot case study design was applied for this impact analysis. The vocational training programmes have resulted in continued-adoption of beekeeping and mushroom cultivation enterprises by 20% and 51% trained farmers, respectively. Age and trainee occupation had significant influence on the adoption decision of beekeeping vocation, whereas education and family income significantly affected the adoption decision of mushroom cultivation. The continued adopters of beekeeping and mushroom growing had increased their family income by 49% and 24%, respectively. These training programmes are augmenting the dwindling farm income of the farmers in Indian Punjab.
Resumo:
In the vision of Mark Weiser on ubiquitous computing, computers are disappearing from the focus of the users and are seamlessly interacting with other computers and users in order to provide information and services. This shift of computers away from direct computer interaction requires another way of applications to interact without bothering the user. Context is the information which can be used to characterize the situation of persons, locations, or other objects relevant for the applications. Context-aware applications are capable of monitoring and exploiting knowledge about external operating conditions. These applications can adapt their behaviour based on the retrieved information and thus to replace (at least a certain amount) the missing user interactions. Context awareness can be assumed to be an important ingredient for applications in ubiquitous computing environments. However, context management in ubiquitous computing environments must reflect the specific characteristics of these environments, for example distribution, mobility, resource-constrained devices, and heterogeneity of context sources. Modern mobile devices are equipped with fast processors, sufficient memory, and with several sensors, like Global Positioning System (GPS) sensor, light sensor, or accelerometer. Since many applications in ubiquitous computing environments can exploit context information for enhancing their service to the user, these devices are highly useful for context-aware applications in ubiquitous computing environments. Additionally, context reasoners and external context providers can be incorporated. It is possible that several context sensors, reasoners and context providers offer the same type of information. However, the information providers can differ in quality levels (e.g. accuracy), representations (e.g. position represented in coordinates and as an address) of the offered information, and costs (like battery consumption) for providing the information. In order to simplify the development of context-aware applications, the developers should be able to transparently access context information without bothering with underlying context accessing techniques and distribution aspects. They should rather be able to express which kind of information they require, which quality criteria this information should fulfil, and how much the provision of this information should cost (not only monetary cost but also energy or performance usage). For this purpose, application developers as well as developers of context providers need a common language and vocabulary to specify which information they require respectively they provide. These descriptions respectively criteria have to be matched. For a matching of these descriptions, it is likely that a transformation of the provided information is needed to fulfil the criteria of the context-aware application. As it is possible that more than one provider fulfils the criteria, a selection process is required. In this process the system has to trade off the provided quality of context and required costs of the context provider against the quality of context requested by the context consumer. This selection allows to turn on context sources only if required. Explicitly selecting context services and thereby dynamically activating and deactivating the local context provider has the advantage that also the resource consumption is reduced as especially unused context sensors are deactivated. One promising solution is a middleware providing appropriate support in consideration of the principles of service-oriented computing like loose coupling, abstraction, reusability, or discoverability of context providers. This allows us to abstract context sensors, context reasoners and also external context providers as context services. In this thesis we present our solution consisting of a context model and ontology, a context offer and query language, a comprehensive matching and mediation process and a selection service. Especially the matching and mediation process and the selection service differ from the existing works. The matching and mediation process allows an autonomous establishment of mediation processes in order to transfer information from an offered representation into a requested representation. In difference to other approaches, the selection service selects not only a service for a service request, it rather selects a set of services in order to fulfil all requests which also facilitates the sharing of services. The approach is extensively reviewed regarding the different requirements and a set of demonstrators shows its usability in real-world scenarios.
Resumo:
This thesis aims at empowering software customers with a tool to build software tests them selves, based on a gradual refinement of natural language scenarios into executable visual test models. The process is divided in five steps: 1. First, a natural language parser is used to extract a graph of grammatical relations from the textual scenario descriptions. 2. The resulting graph is transformed into an informal story pattern by interpreting structurization rules based on Fujaba Story Diagrams. 3. While the informal story pattern can already be used by humans the diagram still lacks technical details, especially type information. To add them, a recommender based framework uses web sites and other resources to generate formalization rules. 4. As a preparation for the code generation the classes derived for formal story patterns are aligned across all story steps, substituting a class diagram. 5. Finally, a headless version of Fujaba is used to generate an executable JUnit test. The graph transformations used in the browser application are specified in a textual domain specific language and visualized as story pattern. Last but not least, only the heavyweight parsing (step 1) and code generation (step 5) are executed on the server side. All graph transformation steps (2, 3 and 4) are executed in the browser by an interpreter written in JavaScript/GWT. This result paves the way for online collaboration between global teams of software customers, IT business analysts and software developers.
Resumo:
The goal of this research is to develop the prototype of a tactile sensing platform for anthropomorphic manipulation research. We investigate this problem through the fabrication and simple control of a planar 2-DOF robotic finger inspired by anatomic consistency, self-containment, and adaptability. The robot is equipped with a tactile sensor array based on optical transducer technology whereby localized changes in light intensity within an illuminated foam substrate correspond to the distribution and magnitude of forces applied to the sensor surface plane. The integration of tactile perception is a key component in realizing robotic systems which organically interact with the world. Such natural behavior is characterized by compliant performance that can initiate internal, and respond to external, force application in a dynamic environment. However, most of the current manipulators that support some form of haptic feedback either solely derive proprioceptive sensation or only limit tactile sensors to the mechanical fingertips. These constraints are due to the technological challenges involved in high resolution, multi-point tactile perception. In this work, however, we take the opposite approach, emphasizing the role of full-finger tactile feedback in the refinement of manual capabilities. To this end, we propose and implement a control framework for sensorimotor coordination analogous to infant-level grasping and fixturing reflexes. This thesis details the mechanisms used to achieve these sensory, actuation, and control objectives, along with the design philosophies and biological influences behind them. The results of behavioral experiments with a simple tactilely-modulated control scheme are also described. The hope is to integrate the modular finger into an %engineered analog of the human hand with a complete haptic system.
Resumo:
In early stages of architectural design, as in other design domains, the language used is often very abstract. In architectural design, for example, architects and their clients use experiential terms such as "private" or "open" to describe spaces. If we are to build programs that can help designers during this early-stage design, we must give those programs the capability to deal with concepts on the level of such abstractions. The work reported in this thesis sought to do that, focusing on two key questions: How are abstract terms such as "private" and "open" translated into physical form? How might one build a tool to assist designers with this process? The Architect's Collaborator (TAC) was built to explore these issues. It is a design assistant that supports iterative design refinement, and that represents and reasons about how experiential qualities are manifested in physical form. Given a starting design and a set of design goals, TAC explores the space of possible designs in search of solutions that satisfy the goals. It employs a strategy we've called dependency-directed redesign: it evaluates a design with respect to a set of goals, then uses an explanation of the evaluation to guide proposal and refinement of repair suggestions; it then carries out the repair suggestions to create new designs. A series of experiments was run to study TAC's behavior. Issues of control structure, goal set size, goal order, and modification operator capabilities were explored. In addition, TAC's use as a design assistant was studied in an experiment using a house in the process of being redesigned. TAC's use as an analysis tool was studied in an experiment using Frank Lloyd Wright's Prairie houses.
Resumo:
In this thesis I present a language for instructing a sheet of identically-programmed, flexible, autonomous agents (``cells'') to assemble themselves into a predetermined global shape, using local interactions. The global shape is described as a folding construction on a continuous sheet, using a set of axioms from paper-folding (origami). I provide a means of automatically deriving the cell program, executed by all cells, from the global shape description. With this language, a wide variety of global shapes and patterns can be synthesized, using only local interactions between identically-programmed cells. Examples include flat layered shapes, all plane Euclidean constructions, and a variety of tessellation patterns. In contrast to approaches based on cellular automata or evolution, the cell program is directly derived from the global shape description and is composed from a small number of biologically-inspired primitives: gradients, neighborhood query, polarity inversion, cell-to-cell contact and flexible folding. The cell programs are robust, without relying on regular cell placement, global coordinates, or synchronous operation and can tolerate a small amount of random cell death. I show that an average cell neighborhood of 15 is sufficient to reliably self-assemble complex shapes and geometric patterns on randomly distributed cells. The language provides many insights into the relationship between local and global descriptions of behavior, such as the advantage of constructive languages, mechanisms for achieving global robustness, and mechanisms for achieving scale-independent shapes from a single cell program. The language suggests a mechanism by which many related shapes can be created by the same cell program, in the manner of D'Arcy Thompson's famous coordinate transformations. The thesis illuminates how complex morphology and pattern can emerge from local interactions, and how one can engineer robust self-assembly.
Resumo:
In this paper, we develop a novel index structure to support efficient approximate k-nearest neighbor (KNN) query in high-dimensional databases. In high-dimensional spaces, the computational cost of the distance (e.g., Euclidean distance) between two points contributes a dominant portion of the overall query response time for memory processing. To reduce the distance computation, we first propose a structure (BID) using BIt-Difference to answer approximate KNN query. The BID employs one bit to represent each feature vector of point and the number of bit-difference is used to prune the further points. To facilitate real dataset which is typically skewed, we enhance the BID mechanism with clustering, cluster adapted bitcoder and dimensional weight, named the BID⁺. Extensive experiments are conducted to show that our proposed method yields significant performance advantages over the existing index structures on both real life and synthetic high-dimensional datasets.
Resumo:
In this paper, we present a P2P-based database sharing system that provides information sharing capabilities through keyword-based search techniques. Our system requires neither a global schema nor schema mappings between different databases, and our keyword-based search algorithms are robust in the presence of frequent changes in the content and membership of peers. To facilitate data integration, we introduce keyword join operator to combine partial answers containing different keywords into complete answers. We also present an efficient algorithm that optimize the keyword join operations for partial answer integration. Our experimental study on both real and synthetic datasets demonstrates the effectiveness of our algorithms, and the efficiency of the proposed query processing strategies.
Resumo:
We present a technique for the rapid and reliable evaluation of linear-functional output of elliptic partial differential equations with affine parameter dependence. The essential components are (i) rapidly uniformly convergent reduced-basis approximations — Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N (optimally) selected points in parameter space; (ii) a posteriori error estimation — relaxations of the residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs; and (iii) offline/online computational procedures — stratagems that exploit affine parameter dependence to de-couple the generation and projection stages of the approximation process. The operation count for the online stage — in which, given a new parameter value, we calculate the output and associated error bound — depends only on N (typically small) and the parametric complexity of the problem. The method is thus ideally suited to the many-query and real-time contexts. In this paper, based on the technique we develop a robust inverse computational method for very fast solution of inverse problems characterized by parametrized partial differential equations. The essential ideas are in three-fold: first, we apply the technique to the forward problem for the rapid certified evaluation of PDE input-output relations and associated rigorous error bounds; second, we incorporate the reduced-basis approximation and error bounds into the inverse problem formulation; and third, rather than regularize the goodness-of-fit objective, we may instead identify all (or almost all, in the probabilistic sense) system configurations consistent with the available experimental data — well-posedness is reflected in a bounded "possibility region" that furthermore shrinks as the experimental error is decreased.
Resumo:
“What is value in product development?” is the key question of this paper. The answer is critical to the creation of lean in product development. By knowing how much value is added by product development (PD) activities, decisions can be more rationally made about how to allocate resources, such as time and money. In order to apply the principles of Lean Thinking and remove waste from the product development system, value must be precisely defined. Unfortunately, value is a complex entity that is composed of many dimensions and has thus far eluded definition on a local level. For this reason, research has been initiated on “Measuring Value in Product Development.” This paper serves as an introduction to this research. It presents the current understanding of value in PD, the critical questions involved, and a specific research design to guide the development of a methodology for measuring value. Work in PD value currently focuses on either high-level perspectives on value, or detailed looks at the attributes that value might have locally in the PD process. Models that attempt to capture value in PD are reviewed. These methods, however, do not capture the depth necessary to allow for application. A methodology is needed to evaluate activities on a local level to determine the amount of value they add and their sensitivity with respect to performance, cost, time, and risk. Two conceptual tools are proposed. The first is a conceptual framework for value creation in PD, referred to here as the Value Creation Model. The second tool is the Value-Activity Map, which shows the relationships between specific activities and value attributes. These maps will allow a better understanding of the development of value in PD, will facilitate comparison of value development between separate projects, and will provide the information necessary to adapt process analysis tools (such as DSM) to consider value. The key questions that this research entails are: · What are the primary attributes of lifecycle value within PD? · How can one model the creation of value in a specific PD process? · Can a useful methodology be developed to quantify value in PD processes? · What are the tools necessary for application? · What PD metrics will be integrated with the necessary tools? The research milestones are: · Collection of value attributes and activities (September, 200) · Development of methodology of value-activity association (October, 2000) · Testing and refinement of the methodology (January, 2001) · Tool Development (March, 2001) · Present findings at July INCOSE conference (April, 2001) · Deliver thesis that captures a formalized methodology for defining value in PD (including LEM data sheets) (June, 2001) The research design aims for the development of two primary deliverables: a methodology to guide the incorporation of value, and a product development tool that will allow direct application.
Resumo:
Tanto los Sistemas de Información Geográfica como la Recuperación de Información han sido campos de investigación muy importantes en las últimas décadas. Recientemente, un nuevo campo de investigación llamado Recuperación de Información Geográfica ha surgido fruto de la confluencia de estos dos campos. El objetivo principal de este campo es definir estructuras de indexación y técnicas para almacenar y recuperar documentos de manera eficiente empleando tanto las referencias textuales como las referencias geográficas contenidas en el texto. En este artículo presentamos la arquitectura de un sistema para recuperación de información geográfica y definimos el flujo de trabajo para la extracción de las referencias geográficas de los documentos. Presentamos además una nueva estructura de indexación que combina un índice invertido, un índice espacial y una ontología. Esta estructura mejora las capacidades de consulta de otras propuestas
Resumo:
An unsupervised approach to image segmentation which fuses region and boundary information is presented. The proposed approach takes advantage of the combined use of 3 different strategies: the guidance of seed placement, the control of decision criterion, and the boundary refinement. The new algorithm uses the boundary information to initialize a set of active regions which compete for the pixels in order to segment the whole image. The method is implemented on a multiresolution representation which ensures noise robustness as well as computation efficiency. The accuracy of the segmentation results has been proven through an objective comparative evaluation of the method
Resumo:
Desenvolupament una aplicació informàtica basada en un sistema de visió per computador, la qual permeti donar una resposta en forma d'informació a partir d'una query d'una imatge que conté una escena o objecte en concret de manera que permeti reconèixer els objectes que apareixen en una imatge per llavors donar informació referent al contingut de la imatge a l’usuari que ha fet la consulta. Resumint, es tracta d’analitzar, dissenyar i construir un sistema de visió per computador capaç de reconèixer objectes d’interès en imatges