994 resultados para Quaternary Sediments
Resumo:
The CaCO3 content in Quaternary deep-sea sediments from Pacific and Atlantic oceans have been suggested to respond differently to glacial/interglacial cycles; CaCO3 contents are highest during glacials in the Pacific but highest during interglacials in the Atlantic Ocean. It is not yet clear as to whether a Pacific or an Atlantic pattern of CaCO3 fluctuations dominates the Indian Ocean. We have analyzed the Ocean Drilling Program (ODP) Site 709A from the western equatorial Indian Ocean for the last 1370 ka to determine the relationships between percentages and fluxes of CaCO3 and Quaternary paleoclimatic changes. We also analyzed the coarse (>25 µm) and fine (<25 µm) fractions of CaCO3 in an attempt at estimating the influence of differences in productivity of foraminifera and calcareous nannofossils in shaping the CaCO3 record. Carbon isotopes and Ba/Al ratios were used as indices of productivity. Percentages and fluxes of CaCO3 in the total sediment and <25 µm fraction do not show any clear relationships to glacial/interglacial cycles derived from d18O of the planktonic foraminifera Globigerinoides ruber. This indicates that CaCO3 fluctuations at this site do not show either a Pacific or an Atlantic pattern of CaCO3 fluctuations. Fluxes of CaCO3 (0.38 to 2.46 g/cm**2/ ka) in total sediment and Ba/Al ratios (0.58 to 3.93 g/cm**2/ka) show six-fold variability through the last 1370 ka, which points out that productivity changes are significant at this site. Fluxes of the fine CaCO3 component demonstrate a 26-fold change (0.02 to 0.52 g/cm**2/ka), whereas the coarse CaCO3 component exhibit eight-fold change (0.13 to 1.07 g/cm**2/ka). This suggests that productivity variations of calcareous nannofossils are greater in comparison with the foraminifera. On the other hand, mean values of coarse CaCO3 fluxes are higher compared to those of fine CaCO3, which reveals that the foraminifera contribute more to the bulk CaCO3 flux than the calcareous nannofossils in the equatorial Indian Ocean.
Resumo:
Study of four species of the biserial planktonic foraminifer Streptochitus from Deep Sea Drilling Project cores of the Eauripik Rise, western equatorial Pacific, and Ninety-east Ridge, Indian Ocean, shows that both the stratigraphic distribution of species and their frequency patterns (though not actual frequencies or abundances) are correlative in the two areas, supporting their use as stratigraphic and paleoecologic index fossils. Their distributional trends are linked to eustatic sea level changes and to changes in the mixing of surface waters; low frequencies and species turnovers occur during regressive phases when strong circulation of oxygenated waters could lead to the subsequent decline of their oxygen-minimum habitat. The species S. subglobigerum. S. latum. S. globigerum, and S. globulosum succeed one another at intervals averaging 2,5 my from late middle Miocene Zone N15 through Quaternary Zone N23. The new species, Streptochilus suhglobigerum, is described for what was formerly thought to be a stratiraphically lower, disjunct part of the range of S. globigerum. These four species most likely belong to a single phylogenetic lineage as evidenced by some transitional morphologies.
Resumo:
During Leg 65, 15 holes were drilled at four sites located on young crust in the mouth of the Gulf of California. Quaternary to upper Pliocene hemipelagic sediments above and interlayered within the young basaltic basement were cored. The influence of hot lava, high temperature gradients, and hydrothermal activity on the mineralogy and geochemistry of the terrigenous sediments near contacts with basalts might therefore be expected. The purpose of the present study was to determine the mineralogy and inorganic geochemistry of these sediments and to analyze the nature and extent of low temperature alteration. To this end we studied the mineralogy and inorganic geochemistry of 75 sediment samples, including those immediately overlying uppermost basalts and those from layers alternating with basalts within the basement. We separated three size fractions - <2 µm (clay), 2-20 µm (intermediate), and >20 µm (coarse) - and applied the following mineralogical determinations: x-ray diffraction (XRD), infrared spectroscopy, transmission and scanning electron microscopy, and optical microscopy (for coarse fractions, using thin sections and smear slides). We calculated the percentages of clay minerals using Biscaye's (1964) method, and used routine wet chemical analyses to determine bulk composition and quantitative spectral analyses for trace elements.
Resumo:
Since the 1970s, Ocean Drilling Program (ODP) and Deep Sea Drilling Program (DSDP) studies have documented high accumulations of biogenic silica and carbonate in the late Miocene-early Pliocene Indian-Pacific Ocean. This high biogenic productivity event, or the "Biogenic Bloom Event," has been dated from 9.0 to 3.5 Ma (Leinen, 1979, doi:10.1130/0016-7606(1979)90<801:BSAITC>2.0.CO;2; Theyer et al., 1985, doi:10.2973/dsdp.proc.85.133.1985; Farrell et al., 1995, doi:10.2973/odp.proc.sr.138.143.1995; Dickens and Owen, 1996, doi:10.1016/0377-8398(95)00054-2, 1999, doi:10.1016/S0025-3227(99)00057-2; Dickens and Barron, 1997, doi:10.1016/S0377-8398(97)00003-0; Berger et al., 1993, doi:10.2973/odp.proc.sr.130.051.1993). It is unknown, however, whether the Biogenic Bloom Event existed in the South China Sea (SCS). High-quality Cenozoic sediment cores taken from the SCS during ODP Leg 184 provide an opportunity to investigate this question. The purpose of this study is to trace and illustrate the change in biogenic productivity in the southern SCS since the late Miocene and the Biogenic Bloom Event in terms of the content and accumulation rate of opal and carbonate at Site 1143.
Resumo:
Sannai-Maruyama is one of the most famous and best-researched mid-Holocene (mid-Jomon) archaeological sites in Japan, because of a large community of people for a long period. Archaeological studies have shown that the Jomon people inhabited the Sannai-Maruyama site from 5.9-4.2 +/- 0.1 cal. kyr B.P. However, a continuous record of the terrestrial and marine environments around the site has not been available. Core KT05-7 PC-02, was recovered from Mutsu Bay, only 20 km from the site, for the reconstruction of high-resolution time series of environmental records, including sea surface temperature (SST). C37 alkenone SSTs showed clear fluctuations, with four periods of high (8.4-7.9, 7.0-5.9, 5.1-4.1, and 2.3-1.4 cal. kyr B.P.) and four of low (-8.4, 7.9-7.0, 5.9-5.1, and 4.1-2.3 cal. kyr B.P.) SST. Thus, each SST cycle lasted 1.0-2.0 kyr, and the amplitude of fluctuation was about 1.5-2.0 °C. Total organic carbon (TOC) and C37 alkenone contents, and the TOC/total nitrogen ratio indicate that marine biogenic production was low before 7.0 cal. kyr B.P., but was clearly increased between 5.9 and 4.0 cal. kyr B.P., because of stronger vertical mixing. During the period when the community at the site prospered (between 5.9 and 4.2 +/- 0.1 cal. kyr B.P.), the terrestrial climate was relatively warm. The high relative abundance of pollen of both Castanea and Quercus subgen. Cyclobalanopsis supports the interpretation that the local climate was optimal for human habitation. Between 5.9 and 5.1 cal. kyr B.P., in spite of warm terrestrial climates, the C37 alkenone SST was low; this apparent discrepancy may be attributed to the water column structure in the Tsugaru Strait, which differed from the modern condition. The evidence suggests that at about 5.9 cal. kyr B.P, high productivity of marine resources such as fish and shellfish and a warm terrestrial climate led to the establishment of a human community at the Sannai-Maruyama site. Then, at about 4.1 +/- 0.1 cal. kyr B.P., abrupt marine and terrestrial cooling, indicated by a decrease of about 2 °C in the C37 alkenone SST and an increase in pollen of taxa of cooler climates, led to a reduced terrestrial food supply, causing the people to abandon the site. The timing of the abandonment is consistent with the timing (around 4.0-4.3 cal. kyr B.P.) of the decline of civilizations in north Mesopotamia and along the Yangtze River. These findings suggest that a temperature rise of ~2 °C in this century as a result of global warming could have a great impact on the human community and especially on agriculture, despite the advances of contemporary society.
Resumo:
Total organic carbon (TOC) and calcium carbonate (CaCO3) concentrations were determined for 304 samples, and biomarkers were analyzed for 101 samples from Core 167-1016C-1H. TOC varies between 1% and 2%, and CaCO3 is typically 1%-4%, with peaks reaching 14%. Paleotemperature estimated from Uk'37 varies from 8.5° to 17.5°C. The Uk'37 variation implies that Core 167-1016C-1H covers oxygen isotope Stages 1-6. Peaks of diatom-derived C25:1 HBI alkene concentrations occur during warming intervals, suggesting intensified upwelling during deglaciation. The concentrations of haptophyte-derived alkenones and diatom-derived C25:1 HBI alkene vary out of phase, which presumably resulted from the changes in the mode of nutrient supply to surface mixed layer. Maximal CaCO3 contents (>10%) were observed in both warming and cooling intervals. The peak in cooling interval relates to an alkenone maximum, whereas the peaks in warming intervals do not. This implies that carbonate production is not the only factor controlling carbonate compensation depth at this site, and it suggests considering the changes in North Pacific deep-water chemistry. Petroleum-type compounds are present in Site 1016 sediments. Their concentrations are maximized in the warming intervals that correspond to the timing of destruction of a huge tar mound off Point Conception. The tarry material was presumably transported by the Arguello Fan system to Site 1016.
Resumo:
Siliciclastic sedimentation at Ocean Drilling Program Site 1017 on the southern slope of the Santa Lucia Bank, central California margin, responded closely to oceanographic and climatic change over the past ~130 ka. Variation in mean grain-size and sediment sorting within the ~25-m-thick succession from Hole 1017E show Milankovitch-band to submillenial-scale variation. Mean grain size of the "sortable silt" fraction (10-63 µm) ranges from 17.6 to 33.9 µm (average 24.8 µm) and is inversely correlated with the degree of sorting. Much of the sediment has a bimodal or trimodal grain-size distribution that is composed of distinct fine silt, coarse silt to fine sand, and clay-size components. The position of the mode and the sorting of each component changes through the succession, but the primary variation is in the presence or abundance of the coarse silt fraction that controls the overall mean grain size and sorting of the sample. The occurrence of the best-sorted, finest grained sediment at high stands of sea level (Holocene, marine isotope Substages 5c and 5e) reflect the linkage between global climate and the sedimentary record at Site 1017 and suggest that the efficiency of off-shelf transport is a key control of sedimentation on the Santa Lucia Slope. It is not clear what proportion of the variation in grain size and sorting may also be caused by variations in bottom current strength and in situ hydrodynamic sorting.
Resumo:
The oxygen and carbon isotopic compositions of the planktonic foraminifer, Neogloboquadrina pachyderma (sinistral), were determined at 20-cm intervals through the 'composite' top ~ 22 m of sediments at ODP Site 645 (Holes 645B, 645C, 645F, and 645G) and at 10-cm intervals through a 9-m piston core (85-027-016) collected during the Hudson site survey. Quantitative analyses of palynomorphs, notably dinocysts, and of planktonic foraminifers were performed. Organic and nitrogen contents and isotopic composition of nitrogen and carbon in organic matter also were determined. These data provide a high-resolution record of changes that occurred in surface-water masses during the last glacial cycle in Baffin Bay. The basin experienced low planktonic productivity during most of the late Pleistocene, either from dilution in surface water by meltwater discharges from the surrounding ice-sheet or from the presence of a relatively dense sea-ice cover. Peaks of meltwater discharge are indicated by d18O values as low as about 1.5 per mil, correlative d13C- d18O shifts, low concentration of planktonic foraminifers, high concentrations of glacially reworked pre-Quaternary palynomorphs, and low-salinity dinocyst assemblages. As a whole, d18O values ranging between 4.5 and 2.5 per mil allow the establishment of an 18O stratigraphy spanning isotopic stages 5 to 1. Because of the poor core recovery, the general paucity of microflora and microfauna, and the possible occurrence of slumping or debris flow at Site 645, further interpretation remains problematic.
Resumo:
Deep-sea benthic foraminiferal assemblages from Ocean Drilling Program (ODP) Site 1143 located in the southern South China Sea (SCS) were investigated to evaluate the relationship between faunal composition patterns and paleoceanographic changes during the last 6 million years (late Miocene to Holocene). We used multivariate statistics (correspondence analysis) to analyze carbon-flux-related changes in assemblage composition of benthic foraminifers. Additional proxies for carbon flux and deep-water ventilation include delta13C records of epifaunal Cibicidoides wuellerstorfi and infaunal Uvigerina peregrina var. dirupta and Melonis pompilioides, benthic foraminiferal accumulation rates (BFARs), diversity indices, and relative abundances of indicator species. We observe three significant benthic faunal changes in the southern South China Sea during the last 6 million years. Strong fluctuations in BFAR and relative abundance of productivity indicator species between glacial and interglacial stages after the mid-Pleistocene revolution (MPR) at approximately 0.9 Ma, indicating stronger seasonal carbon flux fluctuations, are accompanied by the extinction of such species as Stilostomella spp. Increases in carbon flux indicator species are coupled with an overall decrease in benthic foraminifer diversity around 3.0 Ma in the late Pliocene. This may indicate increasing carbon flux in a period of productivity maximum caused by enhanced offshore upwelling from intensified winter monsoon wind strength.
Resumo:
The development of laser ablation-inductively coupled plasma-mass spectrometry has revolutionized the analysis of tephras by providing (1) an efficient and precise method for determining abundances of a wide variety of trace elements at low concentrations in individual glass shards and (2) assessment of geochemical heterogeneities within individual ash horizons. This development is important for petrogenetic studies of intraoceanic arc systems, where tephras provide the most complete temporal record of magmatism. Results from the Izu-Bonin and Mariana arc systems indicate that despite close geographical proximity and similar tectonic evolution, they contrast strongly in terms of geochemical evolution since 35 Ma. Whereas the Mariana tephras have exceptional compositional diversity, ranging from low-K (Oligocene), to high-K (Miocene), and subsequently medium-K compositions (Pliocene-Quaternary), the Izu-Bonin arc has been dominated by low-K compositions throughout. The Mariana increases in K are paralleled by increases in abundances of incompatible trace elements and by increased values of diagnostic ratios (e.g., Nb/yb and Th/yb) regarded as monitors of potential mantle-source fertility. The relative uniformity of Nb/yb and Nb/Zr ratios in Izu-Bonin tephras indicates that cyclic processes of backarc basin development and mantle depletion do not necessarily induce large-scale temporal geochemical variations in the associated arc. Temporal variability within the Mariana arc, and its divergence from the Izu-Bonin arc ca. 13 Ma, can be traced to a major injection of subducted sediment in the Mariana system at this time.
Resumo:
By analogy with the present-day ocean, primary productivity of paleoceans can be reconstructed using calculations based on content of organic carbon in sediments and their accumulation rates. Results of calculations based on published data show that primary productivity of organic carbon, mass of phosphorus involved in the process, and content of phosphorus in ocean waters were relatively stable during Cenozoic and Late Mesozoic. Prior to precipitation on the seafloor together with biogenic detritus, dissolved phosphorus could repeatedly be involved in the biogeochemical cycle. Therefore, only less than 0.1% of phosphorus is retained in bottom sediments. Bulk phosphorus accumulation rate in ocean sediments is partly consistent with calculated primary productivity. Some epochs of phosphate accumulation also coincide with maxima of primary productivity and minima of the fossilization coefficient of organic carbon. The latter fact can testify to episodes of acceleration of organic matter mineralization and release of phosphorus from sediments leading to increase in the phosphorus reserve in paleoceans and phosphate accumulation in some places.
Resumo:
New geological and geophysical data on the Amirante Arc, which locates to the south of the Seychelles Islands, are presented. These data were obtained by Pacific Oceanological Institute during the 33-rd cruise of R/V Professor Bogorov in 1990. The Amirante Arc represents a seamount chain, which has submeridional strike and total length about 400 km. To the west of the Amirante Arc there are a deep sea trench and a back-arc basin, i.e. this area is characterized by structural elements associated with the subduction zone of Western Pacific type. According to our data the Amirante Arc is composed by tholeiites of ocean plateau type. This facts are evidences that the Amirante Arc differs from typical Pacific island arcs. This gives an opportunity to distinguish a special type of oceanic structures, i.e. non-volcanic (amagmatic) ridges. The Amirante Ridge has been probably formed as a result of oceanic crust heaping due to horizontal displacements of its blocks in the process of spreding ridge formation in the Indian Ocean during Cretaceous-Paleogene.
Resumo:
The distribution of pollen in marine sediments is used to record vegetation change on the continent. Generally, a good latitudinal correspondence exists between the distribution patterns of pollen in the marine surface sediments and the occurrence of the source plants on the adjacent continent. To investigate land-sea interactions during deglaciation, we compare proxies for continental (pollen assemblages) and marine conditions (alkenone-derived sea surface temperatures) of two high-resolution, radiocarbon-dated sedimentary records from the tropical southeast Atlantic. The southern site is located West of the Cunene River mouth; the northern site is located West of the Angolan Huambe Mountains. It is inferred that the vegetation in Angola developed from Afroalpine and open savannah during the last Glacial maximum (LGM) via Afromontane Podocarpus forest during Heinrich Event 1 (H1), to an early increase of lowland forest after 14.5 ka. The vegetation record indicates dry and cold conditions during the LGM, cool and wet conditions during H1 and a gradual rise in temperature starting well before the Younger Dryas (YD) period. Terrestrial and oceanic climate developments seem largely running parallel, in contrast to the situation ca. 5° further South, where marine and terrestrial developments diverge during the YD. The cool and wet conditions in tropical West Africa, South of the equator, during H1 suggest that low-latitude insolation variation is more important than the slowdown of the thermohaline circulation for the climate in tropical Africa.
Resumo:
Inversion of isotopic composition in the SO4(2-)-H2S system is shown to be universal in Neoeuxine sediments and an explanation of its occurrence is proposed. Change in isotopic composition of sulfate sulfur in Black Sea waters over last 10-15 thousand years is reconstructed. Periods of alteration between aerobic and anaerobic situations are identified, the beginning of entry of Mediterranean waters into the basin is dated, presence of authigenic carbonates in sediments of the sea is established and amounts are determined. Methane generation from carbon dioxide is shown to have been replaced by its generation from acetate in the paleo-Black Sea period.