967 resultados para Quantification
Resumo:
Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si pre-alloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.
Resumo:
The objective of this study is to design and development of an enzyme-linked biosensor for detection and quantification of phosphate species. Various concentrations of phosphate species were tested and completed for this study. Phosphate is one of the vital nutrients for all living organisms. Phosphate compounds can be found in nature (e.g., water sediments), and they often exist in aninorganic form. The amount of phosphates in the environment strongly influences the operations of living organisms. Excess amount of phosphate in the environment causes eutrophication which in turn causes oxygen deficit for the other living organisms. Fish die and degradation of habitat in the water occurs as a result of eutrophication. In contrast, low phosphate concentration causes death of vegetation since plants utilize the inorganic phosphate for photosynthesis, respiration, and regulation of enzymes. Therefore, the phosphate quantity in lakes and rivers must be monitored. Result demonstrated that phosphate species could be detected in various organisms via enzyme-linked biosensor in this research.
Resumo:
Date of Acceptance: 31/08/2015 The authors would like to thank Total E&P and BG Group for project funding and support and the Industry Technology Facilitator for enabling the collaborative development (grant number 3322PSD). The authors would also like to thank Aberdeen Formation Evaluation Society and the College of Physical Sciences at the University of Aberdeen for partial financial support. Dougal Jerram, Raymi Castilla, Claude Gout, Frances Abbots and an anonymous reviewer are thanked for their constructive comments and suggestions to improve the standard of this manuscript. The authors would also like to express their gratitude toJohn Still and Colin Taylor for technical assistance in the laboratory and Nick Timms (Curtin University) and Angela Halfpenny (CSIRO) for their assistance with the full thin section scanning equipment.
Resumo:
Date of Acceptance: 31/08/2015 The authors would like to thank Total E&P and BG Group for project funding and support and the Industry Technology Facilitator for enabling the collaborative development (grant number 3322PSD). The authors would also like to thank Aberdeen Formation Evaluation Society and the College of Physical Sciences at the University of Aberdeen for partial financial support. Dougal Jerram, Raymi Castilla, Claude Gout, Frances Abbots and an anonymous reviewer are thanked for their constructive comments and suggestions to improve the standard of this manuscript. The authors would also like to express their gratitude toJohn Still and Colin Taylor for technical assistance in the laboratory and Nick Timms (Curtin University) and Angela Halfpenny (CSIRO) for their assistance with the full thin section scanning equipment.
Resumo:
Peer reviewed
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Quantification of the lipid content in liposomal adjuvants for subunit vaccine formulation is of extreme importance, since this concentration impacts both efficacy and stability. In this paper, we outline a high performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD) method that allows for the rapid and simultaneous quantification of lipid concentrations within liposomal systems prepared by three liposomal manufacturing techniques (lipid film hydration, high shear mixing, and microfluidics). The ELSD system was used to quantify four lipids: 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), cholesterol, dimethyldioctadecylammonium (DDA) bromide, and D-(+)-trehalose 6,6′-dibehenate (TDB). The developed method offers rapidity, high sensitivity, direct linearity, and a good consistency on the responses (R2 > 0.993 for the four lipids tested). The corresponding limit of detection (LOD) and limit of quantification (LOQ) were 0.11 and 0.36 mg/mL (DMPC), 0.02 and 0.80 mg/mL (cholesterol), 0.06 and 0.20 mg/mL (DDA), and 0.05 and 0.16 mg/mL (TDB), respectively. HPLC-ELSD was shown to be a rapid and effective method for the quantification of lipids within liposome formulations without the need for lipid extraction processes.
Resumo:
Uncertainty quantification (UQ) is both an old and new concept. The current novelty lies in the interactions and synthesis of mathematical models, computer experiments, statistics, field/real experiments, and probability theory, with a particular emphasize on the large-scale simulations by computer models. The challenges not only come from the complication of scientific questions, but also from the size of the information. It is the focus in this thesis to provide statistical models that are scalable to massive data produced in computer experiments and real experiments, through fast and robust statistical inference.
Chapter 2 provides a practical approach for simultaneously emulating/approximating massive number of functions, with the application on hazard quantification of Soufri\`{e}re Hills volcano in Montserrate island. Chapter 3 discusses another problem with massive data, in which the number of observations of a function is large. An exact algorithm that is linear in time is developed for the problem of interpolation of Methylation levels. Chapter 4 and Chapter 5 are both about the robust inference of the models. Chapter 4 provides a new criteria robustness parameter estimation criteria and several ways of inference have been shown to satisfy such criteria. Chapter 5 develops a new prior that satisfies some more criteria and is thus proposed to use in practice.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
In radiotherapy planning, computed tomography (CT) images are used to quantify the electron density of tissues and provide spatial anatomical information. Treatment planning systems use these data to calculate the expected spatial distribution of absorbed dose in a patient. CT imaging is complicated by the presence of metal implants which cause increased image noise, produce artifacts throughout the image and can exceed the available range of CT number values within the implant, perturbing electron density estimates in the image. Furthermore, current dose calculation algorithms do not accurately model radiation transport at metal-tissue interfaces. Combined, these issues adversely affect the accuracy of dose calculations in the vicinity of metal implants. As the number of patients with orthopedic and dental implants grows, so does the need to deliver safe and effective radiotherapy treatments in the presence of implants. The Medical Physics group at the Cancer Centre of Southeastern Ontario and Queen's University has developed a Cobalt-60 CT system that is relatively insensitive to metal artifacts due to the high energy, nearly monoenergetic Cobalt-60 photon beam. Kilovoltage CT (kVCT) images, including images corrected using a commercial metal artifact reduction tool, were compared to Cobalt-60 CT images throughout the treatment planning process, from initial imaging through to dose calculation. An effective metal artifact reduction algorithm was also implemented for the Cobalt-60 CT system. Electron density maps derived from the same kVCT and Cobalt-60 CT images indicated the impact of image artifacts on estimates of photon attenuation for treatment planning applications. Measurements showed that truncation of CT number data in kVCT images produced significant mischaracterization of the electron density of metals. Dose measurements downstream of metal inserts in a water phantom were compared to dose data calculated using CT images from kVCT and Cobalt-60 systems with and without artifact correction. The superior accuracy of electron density data derived from Cobalt-60 images compared to kVCT images produced calculated dose with far better agreement with measured results. These results indicated that dose calculation errors from metal image artifacts are primarily due to misrepresentation of electron density within metals rather than artifacts surrounding the implants.
Resumo:
A liquid chromatography/mass spectrometry (LC/MS, electrospray ionisation) method has been developed for the quantification of nitrogenous osmolytes (N-osmolytes) in the particulate fraction of natural water samples. Full method validation demonstrates the validity of the method for measuring glycine betaine (GBT), choline and trimethylamine N-oxide (TMAO) in particulates from seawater. Limits of detection were calculated as 3.5, 1.2 and 5.9 pg injected onto column (equivalent to 1.5, 0.6 and 3.9 nmol per litre) for GBT, choline and TMAO respectively. Precision of the method was typically 3% for both GBT and choline and 6% for TMAO. Collection of the particulate fraction of natural samples was achieved via in-line filtration. Resulting chromatography and method sensitivity was assessed and compared for the use of both glass fibre and polycarbonate filters during sample collection. Ion suppression was shown to be a significant cause of reduced instrument response to N-osmolytes and was associated with the presence of seawater in the sample matrix
Resumo:
A liquid chromatography/mass spectrometry (LC/MS, electrospray ionisation) method has been developed for the quantification of nitrogenous osmolytes (N-osmolytes) in the particulate fraction of natural water samples. Full method validation demonstrates the validity of the method for measuring glycine betaine (GBT), choline and trimethylamine N-oxide (TMAO) in particulates from seawater. Limits of detection were calculated as 3.5, 1.2 and 5.9 pg injected onto column (equivalent to 1.5, 0.6 and 3.9 nmol per litre) for GBT, choline and TMAO respectively. Precision of the method was typically 3% for both GBT and choline and 6% for TMAO. Collection of the particulate fraction of natural samples was achieved via in-line filtration. Resulting chromatography and method sensitivity was assessed and compared for the use of both glass fibre and polycarbonate filters during sample collection. Ion suppression was shown to be a significant cause of reduced instrument response to N-osmolytes and was associated with the presence of seawater in the sample matrix
Resumo:
Sea is a huge source to meet our daily needs, lifff(rrsccaaaeyohdpnnmmmimlruCeeeaorcxnefkuuouiaosaae nedparihtnatvesmtrpdmerrdnosi cwrlurlstdo -ofaieasopautiktlaeotnc intcyie,rcensruact irnshtoreitotee nnioipiaeetsnmma oeins oSsdiipdoonu soienadh hnoaae nno ein hctlshlacscnalersadiy i, udif ,y t sec aag bae wo sosc fr eoc a ntsralnoi alfador,oeahtefxneeofl nuc otu h nu imnatofe ratata ncisted rn teoieesdvdxrnnhescceexptsp gmn )ieis oadhitratmtnit dapo imoo i soheiwurc a s- toaaorhpstiie aieaidsr,nrneaedttiod ldenahi s. nctyiitdsl nictsseueavev sSera em d,h,e cdu sbsaeer depsraowe nde ,,cpscn m eaa n hrnfx uiesia tvoitsb memdoytprveatoati ft aisrvfrohceertfr dettogcenitt eo oi euafarsn sgepua srre nwctsamucrmaneoeeuurnworaieostnael aelaut anrtcstptai.iavmula,di sdenetzt et,a rcpn aeHbioetr ren s cttapniwrsibiyredl(nhhar,ciutnele eott Pd yssi naae.aos tgntbfspac uo,h shaalloi tt te eitlisr Tm,nu(eietaa teo s v x-o atvhutotrhdrreb, hqedtdhepy hdloa,fcsevetoesl gguynio uioehueeerlrea rv bpaaepsarti er b acprcepiaiei,chtmanoet rt ttoiilaerovt ahiscyd,tri tft os inktannao oi1nm iitieoccsiirttmdftre,etogcv t0etn.u aino ie pnye seohtmi e aom0oraosad hes lsspa cebnr.nm0end awsae a iiasem)hi vxyn0,ot.iliwPo p o neeingeireb s fTet-chhncaf ttbri el sh,ei tnh chy hbyyonbsaaepivmae .eoa eeeeitlbll,lfdmabern ooos eotltmlayaaiealsccoo,e r ncbtc uw iranuo)dim.aoisgnhlwahp iesn eciysf ot,aeitprOete hes amsecsdh( hfeerdemrh.m.sRiy lfad a i ees dgaosi caeycclag vh T ii illhtasfcTthcuflorccsyloeh aoiol horsot tae shn,csa r.rai erhdrtoa menea,lyxnlesdeh ayrs sao r dcctadi gN e epigep,m etrtapat nn a uy,a reraie oywcrd rahb vireai enepmseacwoanuspnvyyeirepso ntcocrerttassepc c iieeaedohefoaeab me-tnc rie l ndsuhnmaemng i wioi,scgaos tclcaeltnteoeesomaiga eeluaic eieytn, yci ivucnnspi) a.atet.dtfsf,ops g a,is iodgawltbf d hsou,oIenosrwoee a grgino sensoc entoauddrgmeforf h lieureaw o as minaeo nntatb itd t lnuohrhecndieaaratttotoaicssdhndphooyeeaecsssssrffl