990 resultados para Pulmonary-function
Resumo:
While endogenous nitric oxide (NO) may be relevant to the beneficial hemodynamic effects produced by sildenafil during acute pulmonary embolism (APE), huge amounts of inducible NO synthase (iNOS)derived NO may contribute to lung injury. We hypothesized that iNOS inhibition with S-methylisothiourea could attenuate APE-induced increases in oxidative stress and pulmonary hypertension and, therefore, could improve the beneficial hemodynamic and antioxidant effects produced by sildenafil during APE. Hemodynamic evaluations were performed in non-embolized dogs treated with saline (n = 4), S-methylisothiourea (0.01 mg/kg followed by 0.5 mg/kg/h, n = 4), sildenafil (0.3 mg/kg, n = 4), or S-methylisothiourea followed by sildenafil (n = 4), and in dogs that received the same drugs and were embolized with silicon microspheres (n = 8 for each group). Plasma nitrite/nitrate (NOx) and thiobarbituric acid reactive substances (TBARS) concentrations were determined by Griess and a fluorometric assay, respectively. APE increased mean pulmonary arterial pressure (MPAP) and pulmonary vascular resistance index (PVRI) by 25 +/- 1.7 mm Hg and by 941 +/- 34 dyn s cm(-5) m(-2), respectively. S-methylisothiourea neither attenuated APE-induced pulmonary hypertension, nor enhanced the beneficial hemodynamic effects produced by sildenafil after APE (>50% reduction in pulmonary vascular resistance). While sildenafil produced no change in plasma NOx concentrations, S-methylisothiourea alone or combined with sildenafil blunted APE-induced increases in NOx concentrations. Both drugs, either alone or combined, produced antioxidant effects. In conclusion, although iNOS-derived NO may play a key role in APE-induced oxidative stress, our results suggest that the iNOS inhibitor S-methylisothiourea neither attenuates APE-induced pulmonary hypertension, nor enhances the beneficial hemodynamic effects produced by sildenafil. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Background: Twenty-three patients (median age 23 months) who underwent Fallot`s tetralogy repair were investigated prospectively to detect a possible association between histopathologic myocardial remodeling and echocardiographic findings of systolic or diastolic ventricular dysfunction. Methods: Intraoperatively resected infundibular bands and subendocardial biopsy samples from the right ventricle (RV) and left ventricle were obtained for histopathologic evaluation. Tissue Doppler echocardiographic interrogation of the ventricles was performed before surgery and in the postoperative period. Results: Histopathologic data revealed hypertrophy of the RV cardiomyocytes and increased interstitial collagen in both ventricles. Mean values of RV isovolumic acceleration decreased significantly at the third evaluation compared with the preoperative values (P = .006). RV myocardial fibrosis greater than 8.3% was associated with a probability of altered E` of at least 0.7 (odds ratio = 2.31). Conclusion: Preoperative histologic myocardial remodeling influenced the postoperative RV function in this group of patients with late repair. Further studies are necessary to evaluate the myocardium in younger patients and to define its influence in the long-term follow-up. (J Am Soc Echocardiogr 2010;23:912-8.)
Resumo:
OBJECTIVE To investigate the effects of chronic ethanol consumption and diabetes on nitric oxide (NO)-mediated relaxation of cavernosal smooth muscle (CSM). MATERIAL AND METHODS Male Wistar rats were divided into four groups: control, isocaloric, diabetic and ethanol-diabetic. The CSMs were mounted in organ chambers for measurement of isometric tension. Contraction of the strips was induced by electrical field stimulation (EFS, 1-32 Hz) and phenylephrine. We also evaluated the effect of ethanol consumption on the relaxation induced by acetylcholine (ACh; 0.01-1000 mu mol/L), sodium nitroprusside (SNP, 0.01-1000 mu mol/L) or EFS (1-32 Hz) in strips pre-contracted with phenylephrine (10 mu mol/L). Immunoexpression of endothelial NO synthase (eNOS) and inducible NOS (iNOS) was also accessed. RESULTS The endothelium-dependent relaxation induced by ACh was decreased in CSM from ethanol-diabetic rats when compared with the controls, with a mean (sem) of 21 (4) vs 37 (2)%. Similarly, the potency and maximal responses induced by SNP were reduced in the ethanol-diabetic [3.97 (0.38) and 85 (1)%, respectively] and diabetic groups [3.78 (0.56) and 81 (2)%, respectively] when compared with the controls [5.3 (0.22) and 90 (3)%, respectively] and isocaloric [5.3 (0.19) and 92 (1)%, respectively] groups. Noradrenergic nerve-mediated contractions of CSM in response to EFS were increased in rats from ethanol-diabetic and diabetic groups when compared with the control and isocaloric groups. Conversely, there were no differences in EFS-induced relaxation among the groups. The immunostaining assays showed overexpression of eNOS and iNOS in the CSM from diabetic and ethanol-diabetic rats when compared with the control and isocaloric rats. CONCLUSION There was an impairment of relaxation of CSM from ethanol-diabetic and diabetic rats that involved a decrease in the NO-cyclic guanosine monophosphate signalling pathway by endothelium-dependent mechanisms accompanied by a change in the CSM contractile sensitivity.
Resumo:
Background. Hydroxyethylstarch (HES) is a synthetic polymer of glucose that has been suggested for therapeutic use in long-term plasma expansion. The aim of this study was to test the hypothesis that the infusion of a small volume of HES may provide benefits in systemic and regional hemodynamics and metabolism in a brain-dead canine model compared with large volume crystalloid resuscitation. Methods. Fourteen mongrel dogs were subjected to a brain-death protocol by consecutive insufflations of a balloon catheter in the epidural space. One hour after induction of brain-death, the animals were randomly assigned to two groups: NS (0.9% NaCl, 33mL/kg), and HES (6% HES 450/0.7, 17mL/Kg). Systemic and regional hemodynamics were evaluated using Swan-Ganz, ultrasonic flowprobes, and arterial catheters. Serial blood samples were collected for blood gas, electrolyte, and serum chemistry analysis. Systemic, hepatic, and splanchnic O(2)-derived variables were also calculated. Results. Epidural balloon insufflations induced a significant increase in mean arterial pressure, cardiac output (MAP and CO, respectively), regional blood flow, and systemic vascular resistance. Following the hyperdynamic phase, severe hypotension with normalization of systemic and regional blood flow was observed. Fluid resuscitation induced a prompt increase in MAP, CO, and portal vein blood flow, and a significant reduction in systemic and pulmonary vascular resistance. There were no differences between groups in metabolic indices, liver function tests (LFTs), or renal function tests. HES was more effective than NS in restoring cardiac performance in the first 2h after fluid resuscitation (P < 0.05). Both tested solutions partially and temporarily restored systemic and regional oxygen delivery. Conclusion. Small volumes of 6% HES 450/0.7 improved cardiovascular performance and provided the same regional hemodynamic and metabolic benefits of large volumes of isotonic crystalloid solutions. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Background/Aims: Renal risks of nicotine exposure associated with hypercholesterolemia are still unknown. Methods: Thus, hypercholesterolemic rats (HC) and their control (C) were evaluated by inulin clearance (InCl) measured at baseline and during nicotine infusion (100 mu g/kg b.w.). Five groups were studied: (i) C; (ii) DEN (C submitted to a renal denervation); (iii) C + L-arginine (0.25% in drinking water); (iv) HC, and (v) HC + L-arginine (0.25% in drinking water). Furthermore, C and HC had their renal blood flow (RBF) measured and they have also been chronically treated with nicotine (12.5 mu g/ml in drinking water) to assess InCl on the 8th day. Results: Nicotine increased blood pressure in C, DEN and HC and reduced InCl only in C. L-Arginine treatment blunted nicotine effects on blood pressure and increased InCl only in C. Moreover, nicotine did not change RBF in C but elicited in HC, whereas renal vascular resistance was increased in C and unchanged in HC. Indeed, chronic nicotine exposure has also reduced InCl in C. Conclusion: Nicotine acted on the adrenergic system and nitric oxide counteracted this action in C, but the same may not be applied to HC. An impairment in renal autoregulation may explain why InCl was unchanged in HC. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
This study was undertaken to test whether the structural remodelling of pulmonary parenchyma can be sequentially altered in a model and method that demonstrate the progression of the disease and result in remodelling within the lungs that is typical of idiopathic pulmonary fibrosis. Three groups of mice were studied: (i) animals that received 3-5-di-tert-butyl-4-hydroxytoluene (BHT) and were killed after 2 weeks (early BHT = 9); (ii) animals that received BHT and were killed after 4 weeks (late BHT = 11); (iii) animals that received corn oil solution (control = 10). The mice were placed in a ventilated Plexiglas chamber with a mixture of pure humidified oxygen and compressed air. Lung histological sections underwent haematoxylin-eosin, immunohistochemistry (epithelial, endothelial and immune cells) and specific staining (collagen/elastic fibres) methods for morphometric analysis. When compared with the control group, early BHT and late BHT groups showed significant decrease of type II pneumocytes, lower vascular density in both and higher endothelial activity. CD4 was increased in late BHT compared with early and control groups, while CD8, macrophage and neutrophil cells were more prominent only in early BHT. The collagenous fibre density were significantly higher only in late BHT, whereas elastic fibre content in late BHT was lower than that in control group. We conclude that the BHT experimental model is pathologically very similar to human usual interstitial pneumonia. This feature is important in the identification of animal models of idiopathic pulmonary fibrosis that can accurately reflect the pathogenesis and progression of the human disease.
Resumo:
Monocrotaline (MCT) is a pyrrolizidine alkaloid found in a variety of plants. The main symptoms of MCT toxicosis in livestock are related to hepato- and nephrotoxicity; in rodents and humans, the induction of a pulmonary hypertensive state that progresses to cor pulmonale has received much attention. Although studies have shown that MCT can cause effects on cellular functions that would be critical to those of lymphocytes/macrophages during a normal immune response, no immunotoxicological study on MCT have yet to ever be performed. Thus, the aim of the present study was to evaluate the effect of MCT on different branches of the immune system using the rat - which is known to be sensitive to the effects of MCT - as the model. Rats were treated once a day by gavage with 0.0, 0.3, 1.0, 3.0, or 5.0 mg MCT/kg for 14 days, and then any effects of the alkaloid on lymphoid organs, acquired immune responses, and macrophage activity were evaluated. No alterations in the relative weight of lymphoid organs were observed; however, diminished bone marrow cellularity in rats treated with the alkaloid was observed. MCT did not affect humoral or cellular immune responses. When macrophages were evaluated, treatments with MCT caused no significant alterations in phagocytic function or in hydrogen peroxide (H(2)O(2)) production; however, the MCT did cause compromised nitric oxide (NO) release by these cells.
Resumo:
Maternal recognition of pregnancy in the cow requires successful signaling by the conceptus to block luteolysis. Conceptus Growth and function depend on an optimal uterine environment, regulated by luteal progesterone. The objective of this study was to test strategies to optimize luteal function, as well as prevent a dominant follicle from initiating luteolysis. Nelore (Bos taurus indicus) beef cows (n = 40) were submitted to a GnRH/PGF(2 alpha)/GnRH protocol. Cows that ovulated from a dominant ovarian follicle (ovulation = Day 0) were allocated to receive: no additional treatment (Gc; n = 7); 3000 IU of hCG on Day 5 (G(hCG); n = 5); 5 mg of estradiol-17 beta on Day 12 (G(E2); n = 6); or 3000 IU of hCG on Day 5 and 5 mg of estradiol-17 beta on Day 12 (G(hCG/E2); n = 5). Ultrasonographic imaging of the ovaries, assessment of plasma progesterone concentration, and detection of estrus were done daily from Day 5 to the day of subsequent ovulation. Treatment with hCG induced an accessory CL, increased CL volume, and plasma progesterone concentration throughout the luteal phase (P < 0.01). Estradiol-17 beta induced atresia and recruitment of a new wave of follicular growth; it eliminated a potentially estrogen-active, growing ovarian follicle within the critical period for maternal recognition of pregnancy, but it also hastened luteolysis (Days 16 or 17 vs. Days 18 or 19 in non-treated cows). In conclusion, the approaches tested enhanced luteal function (hCG) and altered ovarian follicular dynamics (estradiol-17 beta), but were unable to extend the life-span of the CL in Nelore cows. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Development of the foetal respiratory system includes both pulmonary growth and maturation. In human medicine, a higher incidence of respiratory distress is reported in newborn males. This study aimed to identify different phases of canine foetal lung maturation throughout pregnancy, to determine the stage of pregnancy in which surfactant production begins and to compare pulmonary development of male and female foetuses. Pregnant bitches (34) were subjected to elective ovariohysterectomy and allocated into four groups, according to the stage of pregnancy: 30-40 days of pregnancy (n = 10), 41-50 days (n = 10), 51-60 days (n = 10) and bitches in the first stage of parturition (n = 4). Foetal lungs were histologically processed and evaluated by optical microscopy. The pseudoglandular phase was identified between the 35th day and 46th day of gestation; the onset of canalicular and saccular periods was observed, respectively, from the 48th day and 60th day of pregnancy. Lungs from foetuses at term were in the saccular phase; thus, the development into the alveolar period occurs in the neonatal period. The histological analyses revealed that respiratory tract development is centrifugal, from upper to lower airways. Therefore, it is possible to identify distinct development periods in different portions of the same organ. In conclusion, the saccular phase of lung development begins around 57 and 60 days of pregnancy, the period in which surfactant production is believed to occur. Male and female foetuses present similar pulmonary development from early pregnancy until parturition.
Resumo:
The hepatic effects of the anesthetic association zolazepam/tiletamine were investigated in dogs by analyzing the serum concentration of hepatic enzymes. Ten healthy dogs were divided into two groups of five, group I (GI) and group II (GII). The animals of GI received a single dose of 6,6 mg/kg of zolazepam/tiletamine, by intramuscular (IM) injection. GII dogs received 6,6 mg/kg of zolazepam/tiletamine by the IM route; after a period of 50 - 80 minutes the animals received two additional doses (3,3 mg/kg) by intravenous administration[SAH1]. The hepatic function were analyzed by monitoring the serum concentrations of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and gamma-glutamyl-transferase (GGT). Four blood samples were collected in different moments during the analyses: M0, before the first application of the drug; and M1 to M4. M1 through M3 was collected with intervals of 20 minutes before M0, while M4 was obtained 24 hours after M1. The normality of the obtained results was analyzed by Kolmogorov-Smirnov Test; while the Tukey`s test compared the means, using a level of significance of 5% for both statistical analyses. The mean values of all enzymes evaluated were within normal limits for both experimental groups, without any significant statistical alteration being observed between and within these groups. These results demonstrated that the association of zolazepam/tiletamine at the dosage of 6.6 mg/kg, followed by two applications additional of 3.3 mg/kg resulted in elevation of the evaluated hepatic enzymes without exceeding the physiologic values. Additionally, a single application of 6.6 mg/kg of zolazepam/tiletamine by the intramuscular route resulted in lower values when compared to three applications.
Resumo:
Objective. To investigate whether poor response to controlled ovarian stimulation (COS) is due to a qualitative decline in ovarian function. Methods. This retrospective cohort study included 436 patients younger than 35-years old, undergoing COS for intracytoplasmic sperm injection (ICSI). Patients with four or fewer MII oocytes after COS (poor-responder group, PR, n = 52) were age-matched with normoresponder patients (NR, n = 364). Results. Although similar duration of stimulation (10.5 +/- 0.4 and 9.3 +/- 0.8 days; p = 0.1358), increased doses of gonadotrophins (2510 +/- 865 and 2253 +/- 572 IU; p = 0.0061) were used in the PR. The results show a increased chance of cycle ending of PR (PR: 26.9% and NR: 3.1%; p < 0.0001). Although the lower total number of oocytes retrieved (2.4 +/- 1.4 and 16.2 +/- 9.3; p < 0.0001), equal rate of fertilization (70.2% and 72.0%, p = 0.1190) and high quality embryos were obtained (50.0% and 45.2%; p = 0.4895), resulting in similar implantation (14.5% and 19.7%; p = 0.2246) and abortion (10.0% and 15.4%; p = 1.00) rates, respectively. A trend towards increased pregnancy rate per embryo transfer in NR group was noted (PR: 26.3% and NR: 42.2%; p = 0.0818). Conclusions. Low ovarian response could be associated mainly with a quantitative rather than a qualitative decline in ovarian function. Therefore, even if the ovarian response to stimulation is low, patients aged <= 35 years should process to oocyte retrieval.