891 resultados para Product life cycle -- Environmental aspects
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
The evolution of a technology and the understanding of the moment in its life cycle is of the utmost importance to the entry strategy devised by any company. Having the entry of EDP Brazil on the micro-generation market as background, the present workproject attempts to summarize the most important topics in management literature concerning the theory of technology life-cycles and the updated literature on developments of photovoltaic technology to infer the current positioning of this technology in the theoretical models. The need for this type of work stems from the very common lack of bridging between the academic research of economic aspects relevant to the evolution of technologies and the agents of research on specific technological issues. When this occurs, namely due to the external nature of research to companies, thereby escaping the harsh economic controls of a profit seeking enterprise, the evolution many times lacks the appropriate framework to be studied on a more forward looking manner and to allow for management decisions to be based on.
Resumo:
Since the last decade of the twentieth century, the healthcare industry is paying attention to the environmental impact of their buildings and therefore new regulations, policy goals and Buildings Sustainability Assessment (HBSA) methods are being developed and implemented. At the present, healthcare is one of the most regulated industries and it is also one of the largest consumers of energy per net floor area. To assess the sustainability of healthcare buildings it is necessary to establish a set of benchmarks related with their life-cycle performance. They are both essential to rate the sustainability of a project and to support designers and other stakeholders in the process of designing and operating a sustainable building, by allowing the comparison to be made between a project and the conventional and best market practices. This research is focused on the methodology to set the benchmarks for resources consumption, waste production, operation costs and potential environmental impacts related to the operational phase of healthcare buildings. It aims at contributing to the reduction of the subjectivity found in the definition of the benchmarks used in Building Sustainability Assessment (BSA) methods, and it is applied in the Portuguese context. These benchmarks will be used in the development of a Portuguese HBSA method.
Resumo:
Self-compacting concrete (SCC) demands more studies of durability at higher temperatures when subjected to more aggressive environments in comparison to the conventional vibrated concrete (CC). This work aims at presenting results of durability indicators of SCC and CC, having the same water/binder relations and constituents. The applied methodologies were electrical resistivity, diffusion of chloride ions and accelerated carbonation experiments, among others, such as microstructure study, scanning electron microscope and microtomography experiments. The tests were performed in a research laboratory and at a construction site of the Pernambuco Arena. The obtained results shows that the SCC presents an average electrical resistivity 11.4% higher than CC; the average chloride ions diffusion was 63.3% of the CC; the average accelerated carbonation penetration was 45.8% of the CC; and the average open porosity was 55.6% of the CC. As the results demonstrated, the SCC can be more durable than CC, which contributes to elucidate the aspects related to its durability and consequent prolonged life cycle.
Resumo:
Dissertação de mestrado em Construção e Reabilitação Sustentáveis
Resumo:
The present work focuses on the use of the life cycle assessment (LCA) and life cycle costing (LCC)methodologies to evaluate environmental and economic impacts of polymers and polymer composites materials and products. Initially a literature review is performed in order to assess the scope and limitations of existing LCA and LCC studies on these topics. Then, a case study, based on the production of a water storage glass-fibre reinforced polymer (GFRP) composite storage tank, is presented. The storage tank was evaluated via a LCA/LCC integrated model, a novel way of analysing the life cycle (LC) environmental and economic performances of structural products. The overarching conclusion of the review is that the environmental and economic performances of polymers composites in non-mobile applications are seldom assessed and never in a combined integrated way.
Resumo:
The Prognostic Health Management (PHM) has been asserting itself as the most promising methodology to enhance the effective reliability and availability of a product or system during its life-cycle conditions by detecting current and approaching failures, thus, providing mitigation of the system risks with reduced logistics and support costs. However, PHM is at an early stage of development, it also expresses some concerns about possible shortcomings of its methods, tools, metrics and standardization. These factors have been severely restricting the applicability of PHM and its adoption by the industry. This paper presents a comprehensive literature review about the PHM main general weaknesses. Exploring the research opportunities present in some recent publications, are discussed and outlined the general guide-lines for finding the answer to these issues.
Resumo:
During the recent years followed by the Global Financial Crisis (GFC), most of business and industries around the globe have been hardly hit to the limit that it still struggling to survive, suffering from the crisis financial consequences. For instance, in the construction industry; many construction projects have been suspended or totally cancelled. Nevertheless, among this dilemma, a call has been raised to use the sustainable practices to mitigate the effects of the GFC on construction industry. For the first look, it seems that there is contradiction since the sustainable solutions are often associated with an increase in the initial cost, undoubtedly, the sustainable practices have many advantages in both economic and environment aspects, however, the question which needs to be addressed here is, to what extent using such sustainable practices can mitigate the negative effects of the economic downturn on construction industry. Therefore, it is a challenging argument for using such sustainable construction from its economic perspective, however, this paper is aiming to present the economical benefits of sustainable practices in construction industry, and trying to clear the doubt of the high initial costs of the sustainable construction through studying the life cycle benefit of green building.
Resumo:
The main features of most components consist of simple basic functional geometries: planes, cylinders, spheres and cones. Shape and position recognition of these geometries is essential for dimensional characterization of components, and represent an important contribution in the life cycle of the product, concerning in particular the manufacturing and inspection processes of the final product. This work aims to establish an algorithm to automatically recognize such geometries, without operator intervention. Using differential geometry large volumes of data can be treated and the basic functional geometries to be dealt recognized. The original data can be obtained by rapid acquisition methods, such as 3D survey or photography, and then converted into Cartesian coordinates. The satisfaction of intrinsic decision conditions allows different geometries to be fast identified, without operator intervention. Since inspection is generally a time consuming task, this method reduces operator intervention in the process. The algorithm was first tested using geometric data generated in MATLAB and then through a set of data points acquired by measuring with a coordinate measuring machine and a 3D scan on real physical surfaces. Comparison time spent in measuring is presented to show the advantage of the method. The results validated the suitability and potential of the algorithm hereby proposed
Resumo:
Projeto de investigação integrado de International Master in Sustainable Built Environment
Resumo:
Dissertação de mestrado em Sustentabilidade do Ambiente Construído
Resumo:
Dissertação de mestrado Internacional em Sustentabilidade do Ambiente Construído
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
The concepts involved in sustainable textile fashion, demanding good knowledge about raw materials, processes, end use properties and circuits amongst others, are able to determine the way the textile product is designed and the behavior of the consumer, regarding life style and buying decisions. The textile product`s life integrates raw materials, their processing, distribution, use by the consumer and destination of the product after useful lifetime, this is, his complete life cycle. It is very important to recognize the power of the consumer to influence parameters related to sustainability, namely when he decides how, when and why he buys and afterwards by the attitudes taken during and after use. The conscious act of consumption involves ethical, ecological and technical knowledge in which the concern is overall lifecycle of the fashion product and not exclusively aesthetic and symbolic values strongly related with its ephemeral nature. The present work proposes the classification of textile products by means of an innovative label aiming to establish a rating related to the Life of Fashion Products, by using parameters considered with especial impact in lifecycle, as textile fibers, processing conditions, generated wastes, commercialization circuits, durability and cleaning procedures. This label for sustainable fashion products aims to assist the stakeholders with informed attitudes and correct decisions in order to promote the objectives of sustainable fashion near designers, consumers and industrial experts.