967 resultados para Process-Control Agents
Resumo:
Invasive plant species threaten natural areas by reducing biodiversity and altering ecosystem functions. They also impact agriculture by reducing crop and livestock productivity. Millions of dollars are spent on invasive species control each year, and traditionally, herbicides are used to manage invasive species. Herbicides have human and environmental health risks associated with them; therefore, it is essential that land managers and stakeholders attempt to reduce these risks by utilizing the principles of integrated weed management. Integrated weed management is a practice that incorporates a variety of measures and focuses on the ecology of the invasive plant to manage it. Roadways are high risk areas that have high incidence of invasive species. Roadways act as conduits for invasive species spread and are ideal harborages for population growth; therefore, roadways should be a primary target for invasive species control. There are four stages in the invasion process which an invasive species must overcome: transport, establishment, spread, and impact. The aim of this dissertation was to focus on these four stages and examine the mechanisms underlying the progression from one stage to the next, while also developing integrated weed management strategies. The target species were Phragmites australis, common reed, and Cisrium arvense, Canada thistle. The transport and establishment risks of P. australis can be reduced by removing rhizome fragments from soil when roadside maintenance is performed. The establishment and spread of C. arvense can be reduced by planting particular resistant species, e.g. Heterotheca villosa, especially those that can reduce light transmittance to the soil. Finally, the spread and impact of C. arvense can be mitigated on roadsides through the use of the herbicide aminopyralid. The risks associated with herbicide drift produced by application equipment can be reduced by using the Wet-Blade herbicide application system.
Resumo:
Polycarbonate (PC) is an important engineering thermoplastic that is currently produced in large industrial scale using bisphenol A and monomers such as phosgene. Since phosgene is highly toxic, a non-phosgene approach using diphenyl carbonate (DPC) as an alternative monomer, as developed by Asahi Corporation of Japan, is a significantly more environmentally friendly alternative. Other advantages include the use of CO2 instead of CO as raw material and the elimination of major waste water production. However, for the production of DPC to be economically viable, reactive-distillation units are needed to obtain the necessary yields by shifting the reaction-equilibrium to the desired products and separating the products at the point where the equilibrium reaction occurs. In the field of chemical reaction engineering, there are many reactions that are suffering from the low equilibrium constant. The main goal of this research is to determine the optimal process needed to shift the reactions by using appropriate control strategies of the reactive distillation system. An extensive dynamic mathematical model has been developed to help us investigate different control and processing strategies of the reactive distillation units to increase the production of DPC. The high-fidelity dynamic models include extensive thermodynamic and reaction-kinetics models while incorporating the necessary mass and energy balance of the various stages of the reactive distillation units. The study presented in this document shows the possibility of producing DPC via one reactive distillation instead of the conventional two-column, with a production rate of 16.75 tons/h corresponding to start reactants materials of 74.69 tons/h of Phenol and 35.75 tons/h of Dimethyl Carbonate. This represents a threefold increase over the projected production rate given in the literature based on a two-column configuration. In addition, the purity of the DPC produced could reach levels as high as 99.5% with the effective use of controls. These studies are based on simulation done using high-fidelity dynamic models.
Resumo:
Information systems (IS) outsourcing projects often fail to achieve initial goals. To avoid project failure, managers need to design formal controls that meet the specific contextual demands of the project. However, the dynamic and uncertain nature of IS outsourcing projects makes it difficult to design such specific formal controls at the outset of a project. It is hence crucial to translate high-level project goals into specific formal controls during the course of a project. This study seeks to understand the underlying patterns of such translation processes. Based on a comparative case study of four outsourced software development projects, we inductively develop a process model that consists of three unique patterns. The process model shows that the performance implications of emergent controls with higher specificity depend on differences in the translation process. Specific formal controls have positive implications for goal achievement if only the stakeholder context is adapted, while they are negative for goal achievement if in the translation process tasks are unintendedly adapted. In the latter case projects incrementally drift away from their initial direction. Our findings help to better understand control dynamics in IS outsourcing projects. We contribute to a process theoretic understanding of IS outsourcing governance and we derive implications for control theory and the IS project escalation literature.
Resumo:
This paper presents the design and implementation of an intelligent control system based on local neurofuzzy models of the milling process relayed through an Ehternet-based application. Its purpose is to control the spindle torque of a milling process by using an internal model control paradigm to modify the feed rate in real time. The stabilization of cutting cutting torque is especially necessary in milling processes such as high-spedd roughing of steel moulds and dies tha present minor geometric uncertainties. Thus, maintenance of the curring torque increaes the material removal rate and reduces the risk of damage due to excessive spindle vibration, a very sensitive and expensive component in all high-speed milling machines. Torque control is therefore an interesting challenge from an industrial point of view.
Resumo:
It has been demonstrated that shortened forms of (stem II-deleted) hammerhead ribozymes with low intrinsic activity form very active dimers with a common stem II (very active short ribozymes capable of forming dimers were designated maxizymes). Intracellular activities of heterodimeric maxizymes and conventional ribozymes, under the control of a human tRNAVal-promoter, were compared against the cleavage of HIV-1 tat mRNA. The pol III-driven maxizymes formed very active heterodimers, and they successfully cleaved HIV-1 tat mRNA in mammalian cells at two sites simultaneously. The cleaved fragments were identified directly by Northern blotting analysis. Despite the initial concerns that a complicated dimerization process and formation of inactive homodimers were involved in addition to the process of association with the target, the overall intracellular activities of tRNAVal-driven maxizymes were significantly higher in mammalian cells than those of two sets of independent, conventional hammerhead ribozymes that were targeted at the same two sites within HIV-1 tat mRNA. Because the tRNAVal-driven maxizymes tested to date have been more effective than tRNAVal-driven “standard” hammerhead ribozymes, the tRNAVal-driven heterodimeric maxizymes appear to have potential utility as gene-inactivating agents.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
A sieve plate distillation column has been constructed and interfaced to a minicomputer with the necessary instrumentation for dynamic, estimation and control studies with special bearing on low-cost and noise-free instrumentation. A dynamic simulation of the column with a binary liquid system has been compiled using deterministic models that include fluid dynamics via Brambilla's equation for tray liquid holdup calculations. The simulation predictions have been tested experimentally under steady-state and transient conditions. The simulator's predictions of the tray temperatures have shown reasonably close agreement with the measured values under steady-state conditions and in the face of a step change in the feed rate. A method of extending linear filtering theory to highly nonlinear systems with very nonlinear measurement functional relationships has been proposed and tested by simulation on binary distillation. The simulation results have proved that the proposed methodology can overcome the typical instability problems associated with the Kalman filters. Three extended Kalman filters have been formulated and tested by simulation. The filters have been used to refine a much simplified model sequentially and to estimate parameters such as the unmeasured feed composition using information from the column simulation. It is first assumed that corrupted tray composition measurements are made available to the filter and then corrupted tray temperature measurements are accessed instead. The simulation results have demonstrated the powerful capability of the Kalman filters to overcome the typical hardware problems associated with the operation of on-line analyzers in relation to distillation dynamics and control by, in effect, replacirig them. A method of implementing estimator-aided feedforward (EAFF) control schemes has been proposed and tested by simulation on binary distillation. The results have shown that the EAFF scheme provides much better control and energy conservation than the conventional feedback temperature control in the face of a sustained step change in the feed rate or multiple changes in the feed rate, composition and temperature. Further extensions of this work are recommended as regards simulation, estimation and EAFF control.
Resumo:
The research investigates the past, present and potential future role of Information Specialists (ISps) in process oriented companies. It tests the proposition that ISps in companies that have undertaken formal process reengineering exercises are likely to become more proactive and more business oriented (as opposed to technically oriented) than they had previously been when their organisations were organised along traditional, functional lines. A review of existing literature in the area of Business Process Reengineering and Information Management reveals a lack of consensus amongst researchers concerning the appropriate role for ISps during and after BPR. Opinion is divided as to whether IS professionals should reactively support BPR or whether IT/IS developments should be driving these initiatives. A questionnaire based ‘Descriptive Survey’ with 60 respondents is used as a first stage of primary data gathering. This is followed by follow-up interviews with 20 of the participating organisations to gather further information on their experiences. The final stage of data collection consists of further in-depth interview with four case study companies to provide an even richer picture of their experiences. The results of the questionnaire are analysed and displayed in the form of simple means, frequencies and bar graphs. The ‘NU-DIST’ computer based discourse analysis package was tried in relation to summarising the interview findings, but this proved cumbersome and a visual collation method is preferred. Overall, the researcher contends that the supposition outlined above is proven, and she concludes the research by suggesting the implications of these findings. In particular she offers a ‘Framework for Understanding and Action’ which is deemed to be relevant to both practitioners and future researchers.
Resumo:
Deep hole drilling is one of the most complicated metal cutting processes and one of the most difficult to perform on CNC machine-tools or machining centres under conditions of limited manpower or unmanned operation. This research work investigates aspects of the deep hole drilling process with small diameter twist drills and presents a prototype system for real time process monitoring and adaptive control; two main research objectives are fulfilled in particular : First objective is the experimental investigation of the mechanics of the deep hole drilling process, using twist drills without internal coolant supply, in the range of diarneters Ø 2.4 to Ø4.5 mm and working length up to 40 diameters. The definition of the problems associated with the low strength of these tools and the study of mechanisms of catastrophic failure which manifest themselves well before and along with the classic mechanism of tool wear. The relationships between drilling thrust and torque with the depth of penetration and the various machining conditions are also investigated and the experimental evidence suggests that the process is inherently unstable at depths beyond a few diameters. Second objective is the design and implementation of a system for intelligent CNC deep hole drilling, the main task of which is to ensure integrity of the process and the safety of the tool and the workpiece. This task is achieved by means of interfacing the CNC system of the machine tool to an external computer which performs the following functions: On-line monitoring of the drilling thrust and torque, adaptive control of feed rate, spindle speed and tool penetration (Z-axis), indirect monitoring of tool wear by pattern recognition of variations of the drilling thrust with cumulative cutting time and drilled depth, operation as a data base for tools and workpieces and finally issuing of alarms and diagnostic messages.