907 resultados para Precursor Ribosomal-rna
Resumo:
The presence of an RNA virus in a South American subgenus of the Leishmania parasite, L. (Viannia), was detected several decades ago but its role in leishmanial virulence and metastasis was only recently described. In Leishmania guyanensis, the nucleic acid of Leishmania RNA virus (LRV1) acts as a potent innate immunogen, eliciting a hyper-inflammatory immune response through toll-like receptor 3 (TLR3). The resultant inflammatory cascade has been shown to increase disease severity, parasite persistence, and perhaps even resistance to anti-leishmanial drugs. Curiously, LRVs were found mostly in clinical isolates prone to infectious metastasis in both their human source and experimental animal model, suggesting an association between the viral hyperpathogen and metastatic complications such as mucocutaneous leishmaniasis (MCL). MCL presents as chronic secondary lesions in the mucosa of the mouth and nose, debilitatingly inflamed and notoriously refractory to treatment. Immunologically, this outcome has many of the same hallmarks associated with the reaction to LRV: production of type 1 interferons, bias toward a chronic Th1 inflammatory state and an impaired ability of host cells to eliminate parasites through oxidative stress. More intriguing, is that the risk of developing MCL is found almost exclusively in infections of the L. (Viannia) subtype, further indication that leishmanial metastasis is caused, at least in part, by a parasitic component. LRV present in this subgenus may contribute to the destructive inflammation of metastatic disease either by acting in concert with other intrinsic "metastatic factors" or by independently preying on host TLR3 hypersensitivity. Because LRV amplifies parasite virulence, its presence may provide a unique target for diagnostic and clinical intervention of metastatic leishmaniasis. Taking examples from other members of the Totiviridae virus family, this paper reviews the benefits and costs of endosymbiosis, specifically for the maintenance of LRV infection in Leishmania parasites, which is often at the expense of its human host.
Resumo:
In Pseudomonas aeruginosa, the GacS/GacA two-component system positively controls the quorum-sensing machinery and the expression of extracellular products via two small regulatory RNAs, RsmY and RsmZ. An rsmY rsmZ double mutant and a gacA mutant were similarly impaired in the synthesis of the quorum-sensing signal N-butanoyl-homoserine lactone, the disulfide bond-forming enzyme DsbA, and the exoproducts hydrogen cyanide, pyocyanin, elastase, chitinase (ChiC), and chitin-binding protein (CbpD). Both mutants showed increased swarming ability, azurin release, and early biofilm development.
Resumo:
BACKGROUND: Finding genes that are differentially expressed between conditions is an integral part of understanding the molecular basis of phenotypic variation. In the past decades, DNA microarrays have been used extensively to quantify the abundance of mRNA corresponding to different genes, and more recently high-throughput sequencing of cDNA (RNA-seq) has emerged as a powerful competitor. As the cost of sequencing decreases, it is conceivable that the use of RNA-seq for differential expression analysis will increase rapidly. To exploit the possibilities and address the challenges posed by this relatively new type of data, a number of software packages have been developed especially for differential expression analysis of RNA-seq data. RESULTS: We conducted an extensive comparison of eleven methods for differential expression analysis of RNA-seq data. All methods are freely available within the R framework and take as input a matrix of counts, i.e. the number of reads mapping to each genomic feature of interest in each of a number of samples. We evaluate the methods based on both simulated data and real RNA-seq data. CONCLUSIONS: Very small sample sizes, which are still common in RNA-seq experiments, impose problems for all evaluated methods and any results obtained under such conditions should be interpreted with caution. For larger sample sizes, the methods combining a variance-stabilizing transformation with the 'limma' method for differential expression analysis perform well under many different conditions, as does the nonparametric SAMseq method.
Resumo:
Defects in the interleukin-2 receptor gamma (IL-2R gamma) chain in the man result in an X-linked severe combined immunodeficiency, SCIDX1, characterized by an absence of T-cell differentiation. This phenotype may result from pertubations in IL-2, IL-4-, IL-7- or IL-15-mediated signaling, as the IL-2R gamma chain forms an integral component of these receptor systems. We have isolated and characterized cDNA and genomic clones for the murine IL-2R gamma. The gene (Il2rg) is well conserved between mouse and man with respect to overall structure and size, and contains regions of high conservation in the promoter region as well. Il2rg maps to mouse X chromosome region 40, in a region of synteny with human Xq12-13.1. We have also explored the expression of the IL-2R gamma during thymocyte development. IL-2R gamma transcripts are detected in the earliest thymocyte precursor cells and persist throughout intrathymic development into the mature peripheral compartment. Genomic clones for the murine IL-2R gamma will allow for further studies on the regulation and function of this gene in vivo.
Resumo:
The glyoxalase system is the most important pathway for the detoxification of methylglyoxal (MG), a highly reactive dicarbonyl compound mainly formed as a by-product of glycolysis. MG is a major precursor of advanced glycation end products (AGEs), which are associated with several neurodegenerative disorders. Although the neurotoxic effects of MG and AGEs are well characterized, little is known about the glyoxalase system in the brain, in particular with regards to its activity in different neural cell types. Results of the present study reveal that both enzymes composing the glyoxalase system [glyoxalase-1 (Glo-1) and Glo-2] were highly expressed in primary mouse astrocytes compared with neurons, which translated into higher enzymatic activity rates in astrocytes (9.9- and 2.5-fold, respectively). The presence of a highly efficient glyoxalase system in astrocytes was associated with lower accumulation of AGEs compared with neurons (as assessed by Western blotting), a sixfold greater resistance to MG toxicity, and the capacity to protect neurons against MG in a coculture system. In addition, Glo-1 downregulation using RNA interference strategies resulted in a loss of viability in neurons, but not in astrocytes. Finally, stimulation of neuronal glycolysis via lentiviral-mediated overexpression of 6-phosphofructose-2-kinase/fructose-2,6-bisphosphatase-3 resulted in increased MG levels and MG-modified proteins. Since MG is largely produced through glycolysis, this suggests that the poor capacity of neurons to upregulate their glycolytic flux as compared with astrocytes may be related to weaker defense mechanisms against MG toxicity. Accordingly, the neuroenergetic specialization taking place between these two cell types may serve as a protective mechanism against MG-induced neurotoxicity.
Resumo:
PURPOSE: The phosphoinositide 3-kinase (PI3K)/Akt pathway is frequently activated in human cancer and plays a crucial role in medulloblastoma biology. We were interested in gaining further insight into the potential of targeting PI3K/Akt signaling as a novel antiproliferative approach in medulloblastoma. EXPERIMENTAL DESIGN: The expression pattern and functions of class I(A) PI3K isoforms were investigated in medulloblastoma tumour samples and cell lines. Effects on cell survival and downstream signaling were analyzed following down-regulation of p110alpha, p110beta, or p110delta by means of RNA interference or inhibition with isoform-specific PI3K inhibitors. RESULTS: Overexpression of the catalytic p110alpha isoform was detected in a panel of primary medulloblastoma samples and cell lines compared with normal brain tissue. Down-regulation of p110alpha expression by RNA interference impaired the growth of medulloblastoma cells, induced apoptosis, and led to decreased migratory capacity of the cells. This effect was selective, because RNA interference targeting of p110beta or p110delta did not result in a comparable impairment of DAOY cell survival. Isoform-specific p110alpha inhibitors also impaired medulloblastoma cell proliferation and sensitized the cells to chemotherapy. Medulloblastoma cells treated with p110alpha inhibitors further displayed reduced activation of Akt and the ribosomal protein S6 kinase in response to stimulation with hepatocyte growth factor and insulin-like growth factor-I. CONCLUSIONS: Together, our data reveal a novel function of p110alpha in medulloblastoma growth and survival.
Resumo:
Gene copies that stem from the mRNAs of parental source genes have long been viewed as evolutionary dead-ends with little biological relevance. Here we review a range of recent studies that have unveiled a significant number of functional retroposed gene copies in both mammalian and some non-mammalian genomes. These studies have not only revealed previously unknown mechanisms for the emergence of new genes and their functions but have also provided fascinating general insights into molecular and evolutionary processes that have shaped genomes. For example, analyses of chromosomal gene movement patterns via RNA-based gene duplication have shed fresh light on the evolutionary origin and biology of our sex chromosomes.
Resumo:
Mucocutaneous leishmaniasis is caused by infections with intracellular parasites of the Leishmania Viannia subgenus, including Leishmania guyanensis. The pathology develops after parasite dissemination to nasopharyngeal tissues, where destructive metastatic lesions form with chronic inflammation. Currently, the mechanisms involved in lesion development are poorly understood. Here we show that metastasizing parasites have a high Leishmania RNA virus-1 (LRV1) burden that is recognized by the host Toll-like receptor 3 (TLR3) to induce proinflammatory cytokines and chemokines. Paradoxically, these TLR3-mediated immune responses rendered mice more susceptible to infection, and the animals developed an increased footpad swelling and parasitemia. Thus, LRV1 in the metastasizing parasites subverted the host immune response to Leishmania and promoted parasite persistence.
Resumo:
The localization of Last Glacial Maximum (LGM) refugia is crucial information to understand a species' history and predict its reaction to future climate changes. However, many phylogeographical studies often lack sampling designs intensive enough to precisely localize these refugia. The hairy land snail Trochulus villosus has a small range centred on Switzerland, which could be intensively covered by sampling 455 individuals from 52 populations. Based on mitochondrial DNA sequences (COI and 16S), we identified two divergent lineages with distinct geographical distributions. Bayesian skyline plots suggested that both lineages expanded at the end of the LGM. To find where the origin populations were located, we applied the principles of ancestral character reconstruction and identified a candidate refugium for each mtDNA lineage: the French Jura and Central Switzerland, both ice-free during the LGM. Additional refugia, however, could not be excluded, as suggested by the microsatellite analysis of a population subset. Modelling the LGM niche of T. villosus, we showed that suitable climatic conditions were expected in the inferred refugia, but potentially also in the nunataks of the alpine ice shield. In a model selection approach, we compared several alternative recolonization scenarios by estimating the Akaike information criterion for their respective maximum-likelihood migration rates. The 'two refugia' scenario received by far the best support given the distribution of genetic diversity in T. villosus populations. Provided that fine-scale sampling designs and various analytical approaches are combined, it is possible to refine our necessary understanding of species responses to environmental changes.
Resumo:
Background Carotenoids are the most widespread group of pigments found in nature. In addition to their role in the physiology of the plant, carotenoids also have nutritional relevance as their incorporation in the human diet provides health benefits. In non-photosynthetic tissues, carotenoids are synthesized and stored in specialized plastids called chromoplasts. At present very little is known about the origin of the metabolic precursors and cofactors required to sustain the high rate of carotenoid biosynthesis in these plastids. Recent proteomic data have revealed a number of biochemical and metabolic processes potentially operating in fruit chromoplasts. However, considering that chloroplast to chromoplast differentiation is a very rapid process during fruit ripening, there is the possibility that some of the proteins identified in the proteomic analysis could represent remnants no longer having a functional role in chromoplasts. Therefore, experimental validation is necessary to prove whether these predicted processes are actually operative in chromoplasts. Results A method has been established for high-yield purification of tomato fruit chromoplasts suitable for metabolic studies. Radiolabeled precursors were efficiently incorporated and further metabolized in isolated chromoplast. Analysis of labeled lipophilic compounds has revealed that lipid biosynthesis is a very efficient process in chromoplasts, while the relatively low incorporation levels found in carotenoids suggest that lipid production may represent a competing pathway for carotenoid biosynthesis. Malate and pyruvate are efficiently converted into acetyl-CoA, in agreement with the active operation of the malic enzyme and the pyruvate dehydrogenase complex in the chromoplast. Our results have also shown that isolated chromoplasts can actively sustain anabolic processes without the exogenous supply of ATP, thus suggesting that these organelles may generate this energetic cofactor in an autonomous way. Conclusions We have set up a method for high yield purification of intact tomato fruit chromoplasts suitable for precursor uptake assays and metabolic analyses. Using targeted radiolabeled precursors we have been able to unravel novel biochemical and metabolic aspects related with carotenoid and lipid biosynthesis in tomato fruit chromoplasts. The reported chromoplast system could represent a valuable platform to address the validation and characterization of functional processes predicted from recent transcriptomic and proteomic data.
Resumo:
The gacA gene of the biocontrol strain Pseudomonas fluorescens CHA0 codes for a response regulator which, together with the sensor kinase GacS (=LemA), is required for the production of exoenzymes and secondary metabolites involved in biocontrol, including hydrogen cyanide (HCN). A gacA multicopy suppressor was isolated from a cosmid library of strain CHA0 and identified as the infC-rpmI-rplT operon, which encodes the translation initiation factor IF3 and the ribosomal proteins L35 and L20. The efficiency of suppression was about 30%, as determined by the use of a GacA-controlled reporter construct, i.e. a translational hcnA'-'lacZ fusion. Overexpression of the rsmA gene (coding for a global translational repressor) reversed the suppressive effect of the amplified infC operon. This finding suggests that some product(s) of the infC operon can compete with RsmA at the level of translation in P. fluorescens CHA0 and that important biocontrol traits can be regulated at this level.
Resumo:
Valpha14 invariant (Valpha14i) NKT cells are a subset of regulatory T cells that utilize a semi-invariant TCR to recognize glycolipids associated with monomorphic CD1d molecules. During development in the thymus, CD4(+)CD8(+) Valpha14i NKT precursors recognizing endogenous CD1d-associated glycolipids on other CD4(+)CD8(+) thymocytes are selected to undergo a maturation program involving sequential expression of CD44 and NK-related markers such as NK1.1. The molecular requirements for Valpha14i NKT cell maturation, particularly at early developmental stages, remain poorly understood. In this study, we show that CD4-Cre-mediated T cell-specific inactivation of c-Myc, a broadly expressed transcription factor with a wide range of biological activities, selectively impairs Valpha14i NKT cell development without perturbing the development of conventional T cells. In the absence of c-Myc, Valpha14i NKT cell precursors are blocked at an immature CD44(low)NK1.1(-) stage in a cell autonomous fashion. Residual c-Myc-deficient immature Valpha14i NKT cells appear to proliferate normally, cannot be rescued by transgenic expression of BCL-2, and exhibit characteristic features of immature Valpha14i NKT cells such as high levels of preformed IL-4 mRNA and the transcription factor promyelocytic leukemia zinc finger. Collectively our data identify c-Myc as a critical transcription factor that selectively acts early in Valpha14i NKT cell development to promote progression beyond the CD44(low)NK1.1(-) precursor stage.
Resumo:
The opportunistic ubiquitous pathogen Pseudomonas aeruginosa strain PAOl is a versatile Gram-negative bacterium that has the extraordinary capacity to colonize a wide diversity of ecological niches and to cause severe and persistent infections in humans. To ensure an optimal coordination of the genes involved in nutrient utilization, this bacterium uses the NtrB/C and/or the CbrA/B two-component systems, to sense nutrients availability and to regulate in consequence the expression of genes involved in their uptake and catabolism. NtrB/C is specialized in nitrogen utilization, while the CbrA/B system is involved in both carbon and nitrogen utilization and both systems activate their target genes expression in concert with the alternative sigma factor RpoN. Moreover, the NtrB/C and CbrA/B two- component systems regulate the secondary metabolism of the bacterium, such as the production of virulence factors. In addition to the fine-tuning transcriptional regulation, P. aeruginosa can rapidly modulate its metabolism using small non-coding regulatory RNAs (sRNAs), which regulate gene expression at the post-transcriptional level by diverse and sophisticated mechanisms and contribute to the fast physiological adaptability of this bacterium. In our search for novel RpoN-dependent sRNAs modulating the nutritional adaptation of P. aeruginosa PAOl, we discovered NrsZ (Nitrogen regulated sRNA), a novel RpoN-dependent sRNA that is induced under nitrogen starvation by the NtrB/C two-component system. NrsZ has a unique architecture, formed of three similar stem-loop structures (SL I, II and II) separated by variant spacer sequences. Moreover, this sRNA is processed in short individual stem-loop molecules, by internal cleavage involving the endoribonuclease RNAse E. Concerning NrsZ functions in P. aeruginosa PAOl, this sRNA was shown to trigger the swarming motility and the rhamnolipid biosurfactants production. This regulation is due to the NrsZ-mediated activation of rhlA expression, a gene encoding for an enzyme essential for swarming motility and rhamnolipids production. Interestingly, the SL I structure of NrsZ ensures its regulatory function on rhlA expression, suggesting that the similar SLs are the functional units of this modular sRNA. However, the regulatory mechanism of action of NrsZ on rhlA expression activation remains unclear and is currently being investigated. Additionally, the NrsZ regulatory network was investigated by a transcriptome analysis, suggesting that numerous genes involved in both primary and secondary metabolism are regulated by this sRNA. To emphasize the importance of NrsZ, we investigated its conservation in other Pseudomonas species and demonstrated that NrsZ is conserved and expressed under nitrogen limitation in Pseudomonas protegens Pf-5, Pseudomonas putida KT2442, Pseudomonas entomophila L48 and Pseudomonas syringae pv. tomato DC3000, strains having different ecological features, suggesting an important role of NrsZ in the adaptation of Pseudomonads to nitrogen starvation. Interestingly the architecture of the different NrsZ homologs is similarly composed by SL structures and variant spacer sequences. However, the number of SL repetitions is not identical, and one to six SLs were predicted on the different NrsZ homologs. Moreover, NrsZ is processed in short molecules in all the strains, similarly to what was previously observed in P. aeruginosa PAOl, and the heterologous expression of the NrsZ homologs restored rhlA expression, swarming motility and rhamnolipids production in the P. aeruginosa NrsZ mutant. In many aspects, NrsZ is an atypical sRNA in the bacterial panorama. To our knowledge, NrsZ is the first described sRNA induced by the NtrB/C. Moreover, its unique modular architecture and its processing in similar short SL molecules suggest that NrsZ belongs to a novel family of bacterial sRNAs. -- L'agent pathogène opportuniste et ubiquitaire Pseudomonas aeruginosa souche PAOl est une bactérie Gram négative versatile ayant l'extraordinaire capacité de coloniser différentes niches écologiques et de causer des infections sévères et persistantes chez l'être humain. Afin d'assurer une coordination optimale des gènes impliqués dans l'utilisation de différents nutriments, cette bactérie se sert de systèmes à deux composants tel que NtrB/C et CbrA/B afin de détecter la disponibilité des ressources nutritives, puis de réguler en conséquence l'expression des gènes impliqués dans leur importation et leur catabolisme. Le système NtrB/C régule l'utilisation des sources d'azote alors que le système CbrA/B est impliqué à la fois dans l'utilisation des sources de carbone et d'azote. Ces deux systèmes activent l'expression de leurs gènes-cibles de concert avec le facteur sigma alternatif RpoN. En outre, NtrB/C et CbrA/B régulent aussi le métabolisme secondaire, contrôlant notamment la production d'importants facteurs de virulence. En plus de toutes ces régulations génétiques fines ayant lieu au niveau transcriptionnel, P. aeruginosa est aussi capable de moduler son métabolisme en se servant de petits ARNs régulateurs non-codants (ARNncs), qui régulent l'expression génétique à un niveau post- transcriptionnel par divers mécanismes sophistiqués et contribuent à rendre particulièrement rapide l'adaptation physiologique de cette bactérie. Au cours de nos recherches sur de nouveaux ARNncs dépendant du facteur sigma RpoN et impliqués dans l'adaptation nutritionnelle de P. aeruginosa PAOl, nous avons découvert NrsZ (Nitrogen regulated sRNA), un ARNnc induit par la cascade NtrB/C-RpoN en condition de carence en azote. NrsZ a une architecture unique, composée de trois structures en tige- boucle (TB I, II et III) hautement similaires et séparées par des « espaceurs » ayant des séquences variables. De plus, cet ARNnc est clivé en petits fragments correspondant au trois molécules en tige-boucle, par un processus de clivage interne impliquant l'endoribonucléase RNase E. Concernant les fonctions de NrsZ chez P. aeruginosa PAOl, cet ARNnc est capable d'induire la motilité de type « swarming » et la production de biosurfactants, nommés rhamnolipides. Cette régulation est due à l'activation par NrsZ de l'expression de rhlA, un gène essentiel pour la motilité de type swarming et pour la production de rhamnolipides. Étonnamment, la structure TB I est capable d'assurer à elle seule la fonction régulatrice de NrsZ sur l'expression de rhlA, suggérant que ces molécules TBs sont les unités fonctionnelles de cet ARNnc modulaire. Cependant, le mécanisme moléculaire par lequel NrsZ active l'expression de rhlA demeure à ce jour incertain et est actuellement à l'étude. En plus, le réseau de régulations médiées par NrsZ a été étudié par une analyse de transcriptome qui a indiqué que de nombreux gènes impliqués dans le métabolisme primaire ou secondaire seraient régulés par NrsZ. Pour accentuer l'importance de NrsZ, nous avons étudié sa conservation dans d'autres espèces de Pseudomonas. Ainsi, nous avons démontré que NrsZ est conservé et exprimé en situation de carence d'azote par les souches Pseudomonas protegens Pf-5, Pseudomonas putida KT2442, Pseudomonas entomophila L48, Pseudomonas syringae pv. tomato DC3000, quatre espèces ayant des caractéristiques écologiques très différentes, suggérant que NrsZ joue un rôle important dans l'adaptation du genre Pseudomonas envers la carence en azote. Chez toutes les souches étudiées, les différents homologues de NrsZ présentent une architecture similaire faite de TBs conservées et d'espaceurs. Cependant, le nombre de TBs n'est pas identique et peut varier de une à six copies selon la souche. Les différentes versions de NrsZ sont clivées en petites molécules dans ces quatre souches, comme il a été observé chez P. aeruginosa PAOl. De plus, l'expression hétérologue des différentes variantes de NrsZ est capable de restaurer l'expression de rhlA, la motilité swarming et la production de rhamnolipides dans une souche de P. aeruginosa dont nrsZ a été inactivé. Par bien des aspects, NrsZ est un ARNnc atypique dans le monde bactérien. À notre connaissance, NrsZ est le premier ARNnc décrit comme étant régulé par le système NtrB/C. De plus, son unique architecture modulaire et son clivage en petites molécules similaires suggèrent que NrsZ appartient à une nouvelle famille d'ARNncs bactériens.
Resumo:
Quorum sensing, a cell-to-cell communication system based on small signal molecules, is employed by the human pathogen Pseudomonas aeruginosa to regulate virulence and biofilm development. Moreover, regulation by small trans-encoded RNAs has become a focal issue in studies of virulence gene expression of bacterial pathogens. In this study, we have identified the small RNA PhrS as an activator of PqsR synthesis, one of the key quorum-sensing regulators in P. aeruginosa. Genetic studies revealed a novel mode of regulation by a sRNA, whereby PhrS uses a base-pairing mechanism to activate a short upstream open reading frame to which the pqsR gene is translationally coupled. Expression of phrS requires the oxygen-responsive regulator ANR. Thus, PhrS is the first bacterial sRNA that provides a regulatory link between oxygen availability and quorum sensing, which may impact on oxygen-limited growth in P. aeruginosa biofilms.