963 resultados para Ppar-gamma


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterization of neural and hemodynamic biomarkers of epileptic activity that can be measured using noninvasive techniques is fundamental to the accurate identification of the epileptogenic zone (EZ) in the clinical setting. Recently, oscillations at gamma-band frequencies and above (N30 Hz) have been suggested to provide valuable localizing information of the EZ and track cortical activation associated with epileptogenic processes. Although a tight coupling between gamma-band activity and hemodynamic-based signals has been consistently demonstrated in non-pathological conditions, very little is known about whether such a relationship is maintained in epilepsy and the laminar etiology of these signals. Confirmation of this relationship may elucidate the underpinnings of perfusion-based signals in epilepsy and the potential value of localizing the EZ using hemodynamic correlates of pathological rhythms. Here, we use concurrent multi-depth electrophysiology and 2- dimensional optical imaging spectroscopy to examine the coupling between multi-band neural activity and cerebral blood volume (CBV) during recurrent acute focal neocortical seizures in the urethane-anesthetized rat. We show a powerful correlation between gamma-band power (25–90 Hz) and CBV across cortical laminae, in particular layer 5, and a close association between gamma measures and multi-unit activity (MUA). Our findings provide insights into the laminar electrophysiological basis of perfusion-based imaging signals in the epileptic state and may have implications for further research using non-invasive multi-modal techniques to localize epileptogenic tissue

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studiesthat use prolonged periods of sensory stimulation report associations between regional reductions in neural activity and negative blood oxygenation level-dependent (BOLD) signaling. However, the neural generators of the negative BOLD response remain to be characterized. Here, we use single-impulse electrical stimulation of the whisker pad in the anesthetized rat to identify components of the neural response that are related to “negative” hemodynamic changes in the brain. Laminar multiunit activity and local field potential recordings of neural activity were performed concurrently withtwo-dimensional optical imaging spectroscopy measuring hemodynamic changes. Repeated measurements over multiple stimulation trials revealed significant variations in neural responses across session and animal datasets. Within this variation, we found robust long-latency decreases (300 and 2000 ms after stimulus presentation) in gammaband power (30 – 80 Hz) in the middle-superficial cortical layers in regions surrounding the activated whisker barrel cortex. This reduction in gamma frequency activity was associated with corresponding decreases in the hemodynamic responses that drive the negative BOLD signal. These findings suggest a close relationship between BOLD responses and neural events that operate over time scales that outlast the initiating sensory stimulus, and provide important insights into the neurophysiological basis of negative neuroimaging signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the adult brain contains neural stem cells (NSCs) that generate new neurons throughout life, these astrocyte-like populations are restricted to two discrete niches. Despite their terminally differentiated phenotype, adult parenchymal astrocytes can re-acquire NSC-like characteristics following injury, and as such, these 'reactive' astrocytes offer an alternative source of cells for central nervous system (CNS) repair following injury or disease. At present, the mechanisms that regulate the potential of different types of astrocytes are poorly understood. We used in vitro and ex vivo astrocytes to identify candidate pathways important for regulation of astrocyte potential. Using in vitro neural progenitor cell (NPC)-derived astrocytes, we found that exposure of more lineage-restricted astrocytes to either tumor necrosis factor alpha (TNF-α) (via nuclear factor-κB (NFκB)) or the bone morphogenetic protein (BMP) inhibitor, noggin, led to re-acquisition of NPC properties accompanied by transcriptomic and epigenetic changes consistent with a more neurogenic, NPC-like state. Comparative analyses of microarray data from in vitro-derived and ex vivo postnatal parenchymal astrocytes identified several common pathways and upstream regulators associated with inflammation (including transforming growth factor (TGF)-β1 and peroxisome proliferator-activated receptor gamma (PPARγ)) and cell cycle control (including TP53) as candidate regulators of astrocyte phenotype and potential. We propose that inflammatory signalling may control the normal, progressive restriction in potential of differentiating astrocytes as well as under reactive conditions and represent future targets for therapies to harness the latent neurogenic capacity of parenchymal astrocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We identify gAd as a novel ligand for GPVI that stimulates tyrosine kinase-dependent platelet aggregation. Our data raise the possibility that gAd may promote unwanted platelet activation at sites of vascular injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Although the peroxisome proliferator-activated receptor γ (PPARγ) pathway is central in adipogenesis, it remains unknown whether it influences change in body weight (BW) and whether dietary fat has a modifying effect on the association. OBJECTIVES: We examined whether 27 single nucleotide polymorphisms (SNPs) within 4 genes in the PPARγ pathway are associated with the OR of being a BW gainer or with annual changes in anthropometry and whether intake of total fat, monounsaturated fat, polyunsaturated fat, or saturated fat has a modifying effect on these associations. METHODS: A case-noncase study included 11,048 men and women from cohorts in the European Diet, Obesity and Genes study; 5552 were cases, defined as individuals with the greatest BW gain during follow-up, and 6548 were randomly selected, including 5496 noncases. We selected 4 genes [CCAAT/enhancer binding protein β (CEBPB), phosphoenolpyruvate carboxykinase 2, PPARγ gene (PPARG), and sterol regulatory element binding transcription factor 1] according to evidence about biologic plausibility for interactions with dietary fat in weight regulation. Diet was assessed at baseline, and anthropometry was followed for 7 y. RESULTS: The ORs for being a BW gainer for the 27 genetic variants ranged from 0.87 (95% CI: 0.79, 1.03) to 1.12 (95% CI: 0.96, 1.22) per additional minor allele. Uncorrected, CEBPB rs4253449 had a significant interaction with the intake of total fat and subgroups of fat. The OR for being a BW gainer for each additional rs4253449 minor allele per 100 kcal higher total fat intake was 1.07 (95% CI: 1.02, 1.12; P = 0.008), and similar associations were found for subgroups of fat. CONCLUSIONS: Among European men and women, the influence of dietary fat on associations between SNPs in the PPARγ pathway and anthropometry is likely to be absent or marginal. The observed interaction between rs4253449 and dietary fat needs confirmation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The radiation food processing has been demonstrating great effectiveness in the attack of pathogenic agents, while little compromising nutritional value and sensorial properties of foods. The mate (Ilex paraguariensis), widely consumed product in South America, generally in the form of infusions with hot or cold water, calls of chimarrao or terere, it is cited in literature as one of the best sources phenolic compounds. The antioxidants action of these constituent has been related to the protection of the organism against the free radicals, generated in alive, currently responsible for the sprouting of some degenerative illness as cancer, arteriosclerosis, rheumatic arthritis and cardiovascular clutters among others. The objective of that work was to evaluate the action of the processing for gamma radiation in phenolic compounds of terere beverage in the doses of 0, 3, 5, 7 and 10 kGy. The observed results do not demonstrate significant alterations in phenolic compounds of terere beverage processed by gamma radiation. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various authors have suggested that the gamma-ray burst (GRB) central engine is a rapidly rotating, strongly magnetized, (similar to 10(15)-10(16) G) compact object. The strong magnetic field can accelerate and collimate the relativistic flow and the rotation of the compact object can be the energy source of the GRB. The major problem in this scenario is the difficulty of finding an astrophysical mechanism for obtaining such intense fields. Whereas, in principle, a neutron star could maintain such strong fields, it is difficult to justify a scenario for their creation. If the compact object is a black hole, the problem is more difficult since, according to general relativity it has ""no hair"" (i.e., no magnetic field). Schuster, Blackett, Pauli, and others have suggested that a rotating neutral body can create a magnetic field by non-minimal gravitational-electromagnetic coupling (NMGEC). The Schuster-Blackett form of NMGEC was obtained from the Mikhail and Wanas`s tetrad theory of gravitation (MW). We call the general theory NMGEC-MW. We investigate here the possible origin of the intense magnetic fields similar to 10(15)-10(16) G in GRBs by NMGEC-MW. Whereas these fields are difficult to explain astrophysically, we find that they are easily explained by NMGEC-MW. It not only explains the origin of the similar to 10(15)-10(16) G fields when the compact object is a neutron star, but also when it is a black hole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present work is to study the potential short-term atmospheric and biospheric influence of Gamma Ray Bursts on the Earth. We focus in the ultraviolet flash at planet`s surface, which occurs as a result of the retransmission of the gamma radiation through the atmosphere. This would be the only important short-term effect on life. We mostly consider Archean and Proterozoic eons, and for completeness we also comment on the Phanerozoic. Therefore, in our study we consider atmospheres with oxygen levels ranging from 10(-5) to 1 of the present atmospheric level, representing different moments in the oxygen rise history. Ecological consequences and some strategies to estimate their importance are outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We continue former work on the modeling of potential effects of Gamma Ray Bursts on Phanerozoic Earth. We focus on global biospheric effects of ozone depletion and model the spectral reduction of light by NO(2) formed in the stratosphere. We also illustrate the current complexities involved in the prediction of how terrestrial ecosystems would respond to this kind of burst. We conclude that more biological field and laboratory data are needed to reach even moderate accuracy in this modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin-10 (IL-10) is an endogenous factor that restrains hepatic insulin resistance in diet-induced steatosis Reducing IL-10 expression increases proinflammatory activity in the steatotic liver and worsens insulin resistance As the transcriptional coactivator proliferator-activated receptor gamma coactivator-1 alpha (PGC-1 alpha) plays a central role in dysfunctional hepatocytic activity in diet-induced steatosis, we hypothesized that at least part of the action of PGC-1 alpha could be mediated by reducing the transcription of the IL-10 gene Here, we used immunoblotting, real-time polymerase chain reaction, immunocytochemistry, and chromatin immunoprecipitation assay to investigate the role of PGC-1 alpha in the control of IL-10 expression in hepatic cells First, we show that, in the intact steatotic liver, the expressions of IL-10 and PGC-1 alpha are increased Inhibiting PGC-1 alpha expression by antisense oligonucleotide increases IL-10 expression and reduces the steatotic phenotype. In cultured hepatocytes, the treatment with saturated and unsaturated fatty acids increased IL-10 expression. This was accompanied by increased association of PGC-1 alpha with c-Maf and p50-nuclear factor (NF) kappa B, 2 transcription factors known to modulate IL-10 expression In addition, after fatty acid treatment. PGC-1 alpha, c-Maf, and p50-NF kappa B migrate from the cytosol to the nuclei of hepatocytes and bind to the IL-10 promoter region Inhibiting NF kappa B activation with salicylate reduces IL-10 expression and the association of PGC-1 alpha with p50-NF kappa B Thus, PGC-1 alpha emerges as a potential transcriptional regulator of the inflammatory phenomenon taking place in the steatotic liver (C) 2010 Elsevier Inc All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphine is one of the most prescribed and effective drugs used for the treatment of acute and chronic pain conditions. In addition to its central effects, morphine can also produce peripheral analgesia. However, the mechanisms underlying this peripheral action of morphine have not yet been fully elucidated. Here, we show that the peripheral antinociceptive effect of morphine is lost in neuronal nitric-oxide synthase null mice and that morphine induces the production of nitric oxide in primary nociceptive neurons. The activation of the nitric-oxide pathway by morphine was dependent on an initial stimulation of PI3K gamma/AKT protein kinase B (AKT) and culminated in increasedactivation of K(ATP) channels. In the latter, this intracellular signaling pathway might cause a hyperpolarization of nociceptive neurons, and it is fundamental for the direct blockade of inflammatory pain by morphine. This understanding offers new targets for analgesic drug development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously demonstrated that mononuclear leukocytes from patients with sickle cell disease (SCD) release higher amounts of superoxide compared with normal controls. The aim of this study was to further study the NADPH oxidase system in these patients by investigating gene expression of NADPH oxidase components, phosphorylation of p47(phox) component, and the release of cytokines related to NADPH oxidase activation in mononuclear leukocytes from patients with SCD. gp91(phox) gene expression was significantly higher in monocytes from SCD patients compared with normal controls (P = 0.036). Monocytes from SCD patients showed higher levels of p47 phox phosphorylation compared with normal controls. INF-gamma release by lymphocytes from SCD patients was significantly higher compared with normal controls, after 48 h culture with phytohemagglutinin (P = 0.02). The release of TNF-alpha by monocytes from SCD patients and normal controls was similar after 24 and 48 h culture with lipopolysaccharide (P > 0.05). We conclude that monocytes from SCD patients show higher levels of gp91(phox) gene expression and p47(phox) phosphorylation, along with increased IFN-gamma release by SCD lymphocytes. These findings help to explain our previous observation showing the increased respiratory burst activity of mononuclear leukocytes from SCD patients and may contribute to inflammation and tissue damage in these patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously demonstrated that PAS-1, a 200 kDa protein from Ascaris suum, has a potent immunomodulatory effect on humoral and cell-mediated responses induced by APAS-3 (an allergenic protein from A. suum) or unrelated antigens. In this study, we investigated the mechanisms by which PAS-1 is able to induce this effect on an allergic airway inflammation induced by OVA in mice. C57BL/6 mice were adoptively transferred on day 0 with seven different PAS-1-primed cell populations: PAS-1-primed CD19(+) or B220(+) or CD3(+) or CD4(+) or CD8(+) or CD4(+) CD25) or CD4(+) CD25(+) lymphocytes. These mice were immunized twice with OVA and alum by intraperitoneal route (days 0 and 7) and challenged twice by intranasal route (days 14 and 21). Two days after the last challenge, the airway inflammation was evaluated by antibody levels, cellular migration, eosinophil peroxidase levels, cytokine and eotaxin production, and pulmonary mechanical parameters. Among the adoptively transferred primed lymphocytes, only CD4(+) CD25(+), CD8(+) or the combination of both T cells impaired the production of total IgE and OVA-specific IgE and IgG1 antibodies, eosinophilic airway inflammation, Th2-type cytokines (IL-4, IL-5 and IL-13), eotaxin release and airway hyperreactivity. Moreover, airway recruited cells from CD4(+) CD25(+) and CD8(+) T-cell recipient secreted more IL-10/TGF-beta and IFN-gamma, respectively. Moreover, we found that PAS-1 expands significantly the number of CD4(+) CD25(+) FoxP3(+) and CD8(+) gamma delta TCR(+) cells. In conclusion, these findings demonstrate that the immunomodulatory effect of PAS-1 is mediated by these T-cell subsets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Aim: Chagas` disease is caused by Trypanosoma cruzi and occurs in most Latin American countries. The protozoan may colonize the central nervous system (CNS) of immune-compromised human hosts, thus causing neuronal disorders. Systemic control of the intracellular forms of the parasite greatly depends on the establishment of a TH1 response and subsequent nitric oxide (NO) release. At the CNS, it is known that low concentrations of NO promote neuronal survival and growth, while high concentrations exert toxic effects and neuron death. Accounting for NO production by astrocytes is the glia-derived factor S100 beta, which is overproduced in some neurodegenerative diseases. In the current work, we studied the expression of NO, interferon (IFN)-gamma and S100 beta in the spinal cord tissue of IL-12p40KO mice infected with T. cruzi, a model of neurodegenerative process. Methods: IL-12p40KO and wild-type (WT) female mice infected with T. cruzi Sylvio X10/4 (10(5) trypomastigotes, intraperitoneally) were euthanized when IL-12p40KO individuals presented limb paralysis. Spinal cord sections were submitted to immunohistochemical procedures for localization of neurofilament, laminin, nitrotyrosine, NO synthases (NOS), IFN-gamma and S100 beta. The total number of neurons was estimated by stereological analysis and the area and intensity of immunoreactivities were assessed by microdensitometric/morphometric image analysis. Results: No lesion was found in the spinal cord sections of WT mice, while morphological disarrangements, many inflammatory foci, enlarged vessels, amastigote nests and dying neurons were seen at various levels of IL-12p40KO spinal cord. Compared to WT mice, IL-12p40KO mice presented a decrement on total number of neurons (46.4%, p<0.05) and showed increased values of immunoreactive area for nitrotyrosine (239%, p<0.01) and NOS (544%, p<0.001). Moreover, the intensity of nitrotyrosine (16%, p<0.01), NOS (38%, p<0.05) and S100 beta (21%, p<0.001) immunoreactivities were also augmented. No IFN-gamma labeled cells were seen in WT spinal cord tissue, contrary to IL-12p40KO tissue that displayed inflammatory infiltrating cells and also some parenchymal cells positively labeled.Conclusion: We suggest that overproduction of NO may account for neuronal death at the spinal cord of T. cruzi-infected IL-12p40KO mice and that IFN-gamma and S100 beta may contribute to NOS activation in the absence of IL-12. Copyright (C) 2009 S. Karger AG, Basel