980 resultados para Powders: solid state reaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The wide-line H-1 nuclear magnetic resonance (NMR) spectrum of paper in equilibrium with ambient humidity consists of super-imposed relatively broad and narrow lines. The narrower line is of the order of 2 kHz wide at half the maximum height, while the broader line is of the order of 40 kHz in width at half height. On the basis of these line widths, the narrow line is assigned to water sorbed to the paper, and the broad line to the polymeric constituents of the paper. It was not possible to distinguish between the various polymeric components of paper contributing to the H-1 NMR spectra. A modified Goldman-Shen pulse sequence was used to generate a spatial magnetisation gradient between the polymer and water phases. The exchange of magnetisation between protons associated with water and those associated with the macromolecules in paper was observed. The exchange of magnetisation is discussed within a heat transfer model for homonuclear dipolar coupling, with exchange being characterised by a spin-diffusion coefficient. Consideration of the magnitude of the initial rate of the exchange process and estimates of the spin-spin relaxation times based on H-1 line widths indicate that some water must exist in a sufficiently immobile state as to allow homonuclear dipolar interactions between adjacent polymer and water protons. Thus, water sorbed onto paper must exist in at least two states in mass exchange with each other. This observation allows certain conclusions to be drawn about the ratio of free/bound water as a function of moisture content and the dispersal of water within the polymer matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical method is introduced to determine the nuclear magnetic resonance frequency of a donor (P-31) doped inside a silicon substrate under the influence of an applied electric field. This phosphorus donor has been suggested for operation as a qubit for the realization of a solid-state scalable quantum computer. The operation of the qubit is achieved by a combination of the rotation of the phosphorus nuclear spin through a globally applied magnetic field and the selection of the phosphorus nucleus through a locally applied electric field. To realize the selection function, it is required to know the relationship between the applied electric field and the change of the nuclear magnetic resonance frequency of phosphorus. In this study, based on the wave functions obtained by the effective-mass theory, we introduce an empirical correction factor to the wave functions at the donor nucleus. Using the corrected wave functions, we formulate a first-order perturbation theory for the perturbed system under the influence of an electric field. In order to calculate the potential distributions inside the silicon and the silicon dioxide layers due to the applied electric field, we use the multilayered Green's functions and solve an integral equation by the moment method. This enables us to consider more realistic, arbitrary shape, and three-dimensional qubit structures. With the calculation of the potential distributions, we have investigated the effects of the thicknesses of silicon and silicon dioxide layers, the relative position of the donor, and the applied electric field on the nuclear magnetic resonance frequency of the donor.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study the visual and refractive outcomes after laser-assisted subepithelial keratectomy (LASEK) performed with a 213 nm solid-state laser for a broad range of refractive errors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strontium has been substituted for calcium in the glass series (SiO2)49.46(Na2O)26.38(P2O5)1.07(CaO)23.08x(SrO)x (where x = 0, 11.54, 23.08) to elucidate their underlying atomic-scale structural characteristics as a basis for understanding features related to the bioactivity. These bioactive glasses have been investigated using isomorphic neutron and X-ray diffraction, Sr K-edge EXAFS and solid state 17O, 23Na, 29Si, 31P and 43Ca magic-angle-spinning (MAS) NMR. An effective isomorphic substitution first-order difference function has been applied to the neutron diffraction data, confirming that Ca and Sr behave in a similar manner within the glass network, with residual differences attributed to solely the variation in ionic radius between the two species. The diffraction data provides the first direct experimental evidence of split Ca–O nearest-neighbour correlations in these melt quench bioactive glasses, together with an analogous splitting of the Sr–O correlations; the correlations are attributed to the metal ions correlated either to bridging or to non-bridging oxygen atoms. Triple quantum (3Q) 43Ca MAS NMR corroborates the split Ca–O correlations. Successful simplification of the 2 < r (A) < 3 region via the difference method has also revealed two distinct Na environments. These environments are attributed to sodium correlated either to bridging or to nonbridging oxygen atoms. Complementary multinuclear MAS NMR, Sr K-edge EXAFS and X-ray diffraction data supports the structural model presented. The structural sites present will be intimately related to their release properties in physiological fluids such as plasma and saliva, and hence the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimising material design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a successful ligand- and liquid-free solid state route to form metal pyrophosphates within a layered graphitic carbon matrix through a single step approach involving pyrolysis of previously synthesized organometallic derivatives of a cyclotriphosphazene. In this case, we show how single crystal Mn2P2O7 can be formed on either the micro- or the nanoscale in the complete absence of solvents or solutions by an efficient combustion process using rationally designed macromolecular trimer precursors, and present evidence and a mechanism for layered graphite host formation. Using in situ Raman spectroscopy, infrared spectroscopy, X-ray diffraction, high resolution electron microscopy, thermogravimetric and differential scanning calorimetric analysis, and near-edge X-ray absorption fine structure examination, we monitor the formation process of a layered, graphitic carbon in the matrix. The identification of thermally and electrically conductive graphitic carbon host formation is important for the further development of this general ligand-free synthetic approach for inorganic nanocrystal growth in the solid state, and can be extended to form a range of transition metals pyrophosphates. For important energy storage applications, the method gives the ability to form oxide and (pyro)phosphates within a conductive, intercalation possible, graphitic carbon as host–guest composites directly on substrates for high rate Li-ion battery and emerging alternative positive electrode materials

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new solid state organometallic route to embedded nanoparticle-containing inorganic materials is shown, through pyrolysis of metal-containing derivatives of cyclotriphosphazenes. Pyrolysis in air and at 800 °C of new molecular precursors gives individual single-crystal nanoparticles of SiP2O7, TiO2, P4O7, WP2O7 and SiO2, depending on the precursor used. High resolution transmission electron microscopy investigations reveal, in most cases, perfect single crystals of metal oxides and the first nanostructures of negative thermal expansion metal phosphates with diameters in the range 2–6 nm for all products. While all nanoparticles are new by this method, WP2O7 and SiP2O7 nanoparticles are reported for the first time. In situ recrystallization formation of nanocrystals of SiP2O7 was also observed due to electron beam induced reactions during measurements of the nanoparticulate pyrolytic products SiO2 and P4O7. The possible mechanism for the formation of the nanoparticles at much lower temperatures than their bulk counterparts in both cases is discussed. Degrees of stabilization from the formation of P4O7 affects the nanocrystalline products: nanoparticles are observed for WP2O7, with coalescing crystallization occurring for the amorphous host in which SiP2O7 crystals form as a solid within a solid. The approach allows the simple formation of multimetallic, monometallic, metal-oxide and metal phosphate nanocrystals embedded in an amorphous dielectric. The method and can be extended to nearly any metal capable of successful coordination as an organometallic to allow embedded nanoparticle layers and features to be deposited or written on surfaces for application as high mobility pyrophosphate lithium–ion cathode materials, catalysis and nanocrystal embedded dielectric layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured copper containing materials of CuO, Cu3(PO4)3 and Cu2P2O7 have been prepared by solid-state pyrolysis of molecular CuCl2·NC5H4OH (I), CuCl2·CNCH2C6H4OH (II), oligomeric [Cu(PPh3)Cl]4 (III), N3P3[OC6H4CH2CN·CuCl]6[PF6] (IV), N3P3[OC6H5]5[OC5H4N·Cu][PF6] (V), polymeric chitosan·(CuCl2)n (VI) and polystyrene-co-4-vinylpyridine PS-b-4-PVP·(CuCl2) (VII) precursors. The products strongly depend on the precursor used. The pyrolytic products from phosphorus-containing precursors (III), (IV) and (V) are Cu phosphates or pyrophosphates, while non-phosphorous-containing precursors (VI) and (VII), result in mainly CuO. The use of chitosan as a solid-state template/stabilizer induces the formation of CuO and Cu2O nanoparticles. Copper pyrophosphate (Cu2P2O7) deposited on Si using (IV) as the precursor exhibits single-crystal dots of average diameter 100 nm and heights equivalent to twice the unit cell b-axis (1.5–1.7 nm) and an areal density of 5.1–7.7 Gigadots/in.2. Cu2P2O7 deposited from precursor (VI) exhibits unique labyrinthine high surface area deposits. The morphology of CuO deposited on Si from pyrolysis of (VI) depends on the polymer/Cu meta ratio. Magnetic measurements performed using SQUID on CuO nanoparticle networks suggest superparamagnetic behavior. The results give insights into compositional, shape and morphological control of the as-formed nanostructures through the structure of the precursors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solid-state pyrolysis of organometallic derivatives of a cyclotriphosphazene is demonstrated to be a new, simple and versatile solid-state templating method for obtaining single-crystal micro- and nanocrystals of transition and valve metal oxides. The technique, when applied to Mo-containing organometallics N3P3[OC6H4CH2CN·Mo(CO)5]6 and N3P3[OC6H4CH2CN·Mo(CO)4 py]6, results in stand-alone and surface-deposited lamellar MoO3 single crystals, as determined by electron and atomic force microscopies and X-ray diffraction. The size and morphology of the resulting crystals can be tuned by the composition of the precursor. X-ray photoelectron and infrared spectroscopies indicate that the deposition of highly lamellar MoO3 directly on an oxidized (400 nm SiO2) surface or (100) single-crystal silicon surfaces yields a layered uniphasic single-crystal film formed by cluster diffusion on the surface during pyrolysis of the metal-carbonyl derivatives. For MoO3 in its layered form, this provides a new route to an important intercalation material for high energy density battery materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyclic phosphazene trimers [N3P3(OC6H5)5OC5H4N·Ti(Cp)2Cl][PF6] (3), [N3P3(OC6H4CH2CN·Ti(Cp)2Cl)6][PF6]6 (4), [N3P3(OC6H4-But)5(OC6H4CH2CN·Ti(Cp)2Cl)][PF6] (5), [N3P3(OC6H5)5C6H4CH2CN·Ru(Cp)(PPh3)2][PF6] (6), [N3P3(OC6H5)5C6H4CH2CN·Fe(Cp)(dppe)][PF6] (7) and N3P3(OC6H5)5OC5H4N·W(CO)5 (8) were prepared and characterized. As a model, the simple compounds [HOC5H5N·Ti(Cp)2Cl]PF6 (1) and [HOC6H4CH2CN·Ti(Cp)2Cl]PF6 (2) were also prepared and characterized. Pyrolysis of the organometallic cyclic trimers in air yields metallic nanostructured materials, which according to transmission and scanning electron microscopy (TEM/SEM), energy-dispersive X-ray microanalysis (EDX), and IR data, can be formulated as either a metal oxide, metal pyrophosphate or a mixture in some cases, depending on the nature and quantity of the metal, characteristics of the organic spacer and the auxiliary substituent attached to the phosphorus cycle. Atomic force microscopy (AFM) data indicate the formation of small island and striate nanostructures. A plausible formation mechanism which involves the formation of a cyclomatrix is proposed, and the pyrolysis of the organometallic cyclic phosphazene polymer as a new and general method for obtaining metallic nanostructured materials is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented in this thesis examines the properties of BPEs of various configurations and under different operating conditions in a large planar LEC system. Detailed analysis of time-lapsed fluorescence images allows us to calculate the doping propagation speed from the BPEs. By introducing a linear array of BPEs or dispersed ITO particles, multiple light-emitting junctions or a bulk homojunction have been demonstrated. In conclusion, it has been observed that both applied bias voltages and sizes of BPEs affected the electrochemical doping from the BPE. If the applied bias voltage was initially not sufficiently high enough, a delay in appearance of doping from the BPE would take place. Experiments of parallel BPEs with different sizes (large, medium, small) demonstrate that the potential difference across the BPEs has played a vital role in doping initiation. Also, the p-doping propagation distance from medium-sized BPE has displayed an exponential growth over the time-span of 70 seconds. Experiments with a linear array of BPEs with the same size demonstrate that the doping propagation speed of each floating BPE was the same regardless of its position between the driving electrodes. Probing experiments under high driving voltages further demonstrated the potential of having a much more efficient light emission from an LEC with multiple BPEs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os sensores lambda resistivos possuem as vantagens de simplicidade e menor custo relativamente à utilização generalizada de sensores potenciométricos de oxigénio. Nesse sentido, os titanatos de estrôncio têm sido alvo de diversos estudos. Para a produção de uma relação inequívoca entre a condutividade destes materiais e a pressão parcial de oxigénio é necessária a adição de um dopante dador que suprime a condução eletrónica do tipo-p na região de pressões parciais de oxigénio próximas de ar. Contudo, a adição de um dopante dador produz respostas lentas destes materiais quando densos a variações da pressão parcial de oxigénio. Além da preparação usual dos pós por reação do estado sólido, foram preparadas diversas composições por mecanossíntese. Tal relaciona-se com o fato exaustivamente reportado de as amostras destes materiais, especialmente quando dopados com dadores, apresentarem comportamentos dependentes das condições de processamento. Teve ainda o intuito de avaliar a viabilidade da sua preparação por este método, e consequentemente verificar se este método de preparação, que presumivelmente produzirá pós com composição mais homogénea e mais reativos, permite alterar/manipular a resposta obtida por amostras com eles produzidas. Foram preparados diversos filmes, tipologia muito usada na produção de sensores resistivos, e amostras porosas com diversas composições à base de titanato de estrôncio produzidos com variadas condições de processamento. Foram realizadas diversas caracterizações sobre estes espécimes numa tentativa de melhor compreender as propriedades destes materiais e a dependência destas com parâmetros microestruturais como o tamanho de grão e a porosidade. Foi verificado que os exemplares de titanato de estrôncio não dopado, quer em filmes quer em amostras porosas, apresentam um comportamento elétrico semelhante ao apresentado por amostras densas deste material. Apurou-se ainda, que as suas características apresentam uma variação ténue com a alteração das condições de processamento. Já espécimes de titanato de estrôncio dopados com dador revelam uma forte dependência das suas propriedades com as condições de processamento utilizadas, nomeadamente, a temperatura de sinterização e o tempo de permanência a essa temperatura. Para o fabrico de sensores resistivos de oxigénio poderá ser preferível o recurso a amostras porosas pelo facto de mais facilmente se manipularem as suas características microestruturais e devido à exclusão dos problemas associados à interação entre o substrato de alumina e o filme. As composições não dopadas são as indicadas para esta função se a gama de pressões de oxigénio a avaliar for relativamente pouco extensa sendo aconselhadas as composições dopadas com dador se for pretendida uma medição da pressão parcial de oxigénio em zonas mais extensas correspondentes à queima com deficiência ou excesso de oxigénio. Mesmo em amostras de elevada porosidade poderá ocorrer resposta transiente do material dopado com dador.