889 resultados para Porous polyethylene
Resumo:
The purpose of this study was to attain and characterize ternary complexes of simvastatin, beta-cyclodextrin (beta CD) and different polymers, and then select those that lead to a greater increase in drug solubility. The complexes were prepared with the co-evaporation method and the polymers used were polyethylene glycol 1500, polyethylene glycol 4000, povidone, copovidone, crospovidone, maltodextrin and hydroxypropyl methyl cellulose. The characterization of complexes was carried out through aqueous solubility, DSC and TG. There was an increase in solubility for all the complexes prepared with beta CD and the different polymers, but only when crospovidone and maltodextrin were used was there a significant difference observed between the solubility of the physical mixture and that of the complex. The DSC curves indicate that the non-complexed drug is even in the sample of the complex with higher solubility, thus none of the polymers was able to achieve a total complexation of the drug.
Resumo:
PEGylation is a strategy that has been used to improve the biochemical properties of proteins and their physical and thermal stabilities. In this study, hen egg-white lysozyme (EC 3.2.1.17; LZ) was modified with methoxypolyethylene glycol-p-nitrophenyl carbonate (mPEG-pNP, MW 5000). This PEGylation of LZ produced conjugates that retained full enzyme activity with glycol chitosan, independent of degree of enzyme modification; its biological activity with the substrate Micrococcus lysodeikticus was altered according to its degree of modification. The conjugate obtained with a low degree of mPEG-pNP/NH(2) modification was studied by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF), demonstrating a spectral peak at m/z 19,988 Da with 77% of its original enzymatic activity. Spectroscopic studies of Fourier transform infrared (FIR) and circular dichroism (CD) did not show any relevant differences in protein structure between the native and conjugate LZ. Studies of the effects of pH and temperature on PEGylated LZ indicated that the conjugate was active over a broad pH range, stable at 50 degrees C, and demonstrated resistance to proteolytic degradation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
PEGylation is one of the most promising and extensively studied strategies for improving the pharmacological properties of proteins as well as their physical and thermal stability. Purified lysozyme obtained from hen egg white by batch mode was modified by PEGylation with methoxypolyethyleneglycol succinimidyl succinato (mPEG-SS, MW 5000). The conjugates produced retained full enzyme activity with the substrate glycol chitosan, independent of degree of enzyme modification, although lysozyme activity with the substrate Micrococcus lysodeikticus was altered according to the degree of modification. The conjugate with a low degree of modification by mPEG-SS retained 67% of its enzyme activity with the M. lysodeikticus substrate. The mPEG-SS was also shown to be a highly reactive polymer. The effects of pH and temperature on PEGylated lysozymes indicated that the conjugate was active over a wide pH range and was stable up to 50 degrees C. This conjugate also showed resistance to proteolytic degradation, remained stable in human serum, and displayed greater antimicrobial activity than native lysozyme against Gram-negative bacteria.
Resumo:
PEGylation is a successful strategy for improving the biochemical and biopharmaceutical properties of proteins and peptides through the covalent attachment of polyethylene glycol chains. In this work, purified recombinant uricase from Candida sp. (UC-r) was modified by PEGylation with metoxypolyethilenoglycol-p-nitrophenyl-carbonate (mPEG-pNP) and metoxypolyethyleneglycol-4,6-dichloro-s-triazine (mPEG-CN). The UC-r-mPEG-pNP and UC-r-mPEG-CN conjugates retained 87% and 75% enzyme activity respectively. The K(M) values obtained 2.7 x 10(-5) M (mPEG-pNP) or 3.0 x 10(-5) M (mPEG-CN) lot the conjugates as compared to 5.4 x 10(-5) M for the native UC-r, suggesting enhancement in the substrate affinity of the enzyme attached. The effects of pH and temperature on PEGylated UC-r indicated that the conjugates were more active at close physiological pH and were stable up to 70 degrees C. Spectroscopic study performed by circular dichroism at 20 degrees C and 50 degrees C did not show any relevant difference in protein structure between native and PEGylated UC-r. In rabbit and Balb/c mice, the native UC-r elicited an intense immune response being highly immunogenic. On the other hand, the PEGylated UC-r when injected chronically in mice did not induce any detectable antibody response. This indicates sufficient reduction of the immunogenicity this enzyme by mPEG-pNP or mPEG-CN conjugation, making it suitable for a possible therapeutical use. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Aeration and agitation are important variables to ensure effective oxygen transfer rate during aerobic bioprocesses: therefore, the knowledge of the volumetric mass transfer coefficient (k(L)a) is required. In view of selecting the optimum oxygen requirements for extractive fermentation in aqueous two-phase system (ATPS), the k(L)a values in a typical ATPS medium were compared in this work with those in distilled water and in a simple fermentation medium. in the absence of biomass. Aeration and agitation were selected as the independent variables using a 2(2) full factorial design. Both variables showed statistically significant effects on k(L)a, and the highest values of this parameter in both media for simple fermentation (241 s(-1)) and extractive fermentation with ATPS (70.3 s(-1)) were observed at the highest levels of aeration (5 vvm) and agitation (1200 rpm). The k(L)a values were then used to establish mathematical correlations of this response as a function of the process variables. The exponents of the power number (N(3)D(2)) and superficial gas velocity (V(s)) determined in distilled water (alpha = 0.39 and beta = 0.47, respectively) were in reasonable agreement with the ones reported in the literature for several aqueous systems and close to those determined for a simple fermentation medium (alpha=0.38 and beta=0.41). On the other hand, as expected by the increased viscosity in the presence of polyethylene glycol, their values were remarkably higher in a typical medium for extractive fermentation (alpha=0.50 and beta=1.0). A reasonable agreement was found between the experimental data of k(L)a for the three selected systems and the values predicted by the theoretical models, under a wide range of operational conditions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A 2(3-1) factorial experimental design was used to evaluate the performance of a perforated rotating disc contactor to extract alpha-toxin from the fermented broth of Clostridium perfringens Type A by aqueous two-phase system of polyethylene glycol-phosphate salts. The influence of three independent variables, specifically the dispersed phase flowrate, the continuous phase flowrate and the disc rotational speed, was investigated on the hold up, the mass transfer coefficient, the separation efficiency and the purification factor, taken as the response variables. The optimum dispersed phase flowrate was 3.0 mL/min for all these responses. Besides, maximum values of hold up (0.80), separation efficiency (0. 10) and purification factor (2.4) were obtained at this flowrate using the lowest disc rotational speed (35 rpm), while the optimum mass transfer coefficient (0. 165 h(-1)) was achieved at the highest agitation level (140 rpm). The results of this study demonstrated that the dispersed phase flowrate strongly influenced the performance of PRDC, in that both the mass transfer coefficient and hold up increased with this parameter. (c) 2007 Elsevier B. V. All rights reserved.
Resumo:
This work deals with the use of an aqueous two-phase system (ATPS) of PEG/citrate to remove proteases from a Clostridium perfringens fermentation broth. To plan the experimental tests and evaluate the corresponding results, three successive experimental designs were employed, for which the PEG molar mass (M-PEG) and concentration (C-PEG), the citrate concentration (C-C) and the pH were selected as independent variables, while the purification factor (PF), the partition coefficient (K), the activity yield (Y) and the selectivity (S) were selected as responses. PF of proteases in the top phase was shown to increase with increasing MPEG and decreasing Cc, whereas a completely opposite trend was observed for K. On the other hand, Y was favored by simultaneous decreases in both these variables, while S decreased with increasing Cc. Therefore, selecting a simultaneous increase in PF and Y as the most desirable result, the best performance of the system was obtained using M-PEG = 10-000 g/mol C-PEG = 22% (w/w) and C-c = 8.0% (w/w) at pH 8.5. Under these conditions, the activity yield was very high (131 %) but the purification factor (4.2) and the selectivity (4.3) were lower than those ensured by more selective purification methods. According to these results, the ATPS seems to be an interesting alternative primary concentration/decontamination step for vaccine preparation from C. perfringens fermented broth. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Infections caused by Corynebacterium diphtheriae frequently induce situations in which very small doses of antigens injected intradermally can cause strong inflammatory reactions. This bacterium secretes the diphtheria toxin (DT), a virulence factor that can be lethal to the human organism at doses below 0.1 mu g/kg of body weight. The present work proposes alternative methods of DT purification using affinity chromatography and of DT detoxification through conjugating with the polymer methoxypolyethylene glycol activated (mPEG). Tests were performed to evaluate: the formation of edemas and the presence of dermonecrotic activity, in vitro cytotoxicity to Vero cells, the neutralizing activity of serum from guinea pigs immunized with the diphtheria toxoid inactivated with mPEG, and the immunogenic activity of the purified and modified toxin. The results indicated that purification with Blue Sepharose was an efficient method, yielding antigen purity equivalent to 2600 Lf/mg of protein nitrogen. The modification of the Purified Toxin with mPEG did not result in the formation of edema or necrosis although it was immunogenic and stimulated the formation of antibodies that could neutralize the Purified Toxin. The toxoid obtained from the purified toxin maintained its immunogenic characteristics, inducing antibodies with neutralizing activity; edema and necrosis were still observed, however. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A three-phase liquid-phase microextraction (LPME) method using porous polypropylene hollow fibre membrane with a sealed end was developed for the extraction of mirtazapine (MRT) and its two major metabolites, 8-hydroxymirtazapine (8-OHM) and demethylmirtazapine (DMR), from human plasma. The analytes were extracted from 1.0 mL of plasma, previously diluted and alkalinized with 3.0 mL 0.5 mol L-1 pH 8 phosphate buffer solution and supplemented with 15% sodium chloride (NaCl), using n-hexyl ether as organic solvent and 0.01 moL L-1 acetic acid solution as the acceptor phase. Haloperidol was used as internal standard. The chromatographic analyses were carried out on a chiral column, using acetonitrile-methanol-ethanol (98:1:1, v/v/v) plus 0.2% diethylamine as mobile phase, at a flow rate of 1.0 mL min(-1). Multi-reaction monitoring (MRM) detection was performed by mass spectrometry (MS-MS) using a triple-stage quadrupole and electrospray ionization interface operating in the positive ion mode. The mean recoveries were in 18.3-45.5% range with linear responses over the 1.25-125 ng mL(-1) concentration range for all enantiomers evaluated. The quantification limit (LOQ) was 1.25 ng mL(-1). Within-day and between-day assay precision and accuracy (2.5, 50 and 100 ng mL(-1)) showed relative standard deviation and the relative error lower than 11.9% for all enantiomers evaluated. Finally, the method was successfully used for the determination of mirtazapine and its metabolite enantiomers in plasma samples obtained after single drug administration of mirtazapine to a healthy volunteer. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Solubility represents a limiting factor when testing new compounds in animal experiments, since solubilizing agents generally have pharmacological effects that can interfere with the studied substance. Vehicles are commonly used for solubilizing certain substances including apolar and polar extracts obtained from medicinal plants. In this study, fifteen vehicles were investigated on mice neuromuscular preparations. A known in vitro neuroblocker myotoxin from Bothrops jararacussu venom, bothropstoxin-I, was used as a pharmacological tool for testing the medicinal potential of apolar and polar extracts (hexane, dichloromethane, ethyl acetate and methanol) obtained from Casearia sylvestris Sw. leaves, which in turn were used for testing their solubility and concomitantly to produce no change on basal response of indirectly stimulated mouse phrenic nerve-diaphragm preparations. Taken together in vitro biological system and extracts solubility, our results showed that dimethyl sulphoxide and polyethylene glycol 400 were the better vehicles, and methanol extract solubilized on PEG 400 was the only one able to act against the paralysis induced by the myotoxin. Thus, this study points out to the relevant role that vehicles exhibit for extracting the potential pharmacological activity of plants in a given test system.
Resumo:
The hot melt granulation of a coarse pharmaceutical powder in a top spray spouted bed is described. The substrate was lactose-polyvinylpyrrolidone particles containing or not acetaminophen as a drug model. Polyethylene glycol (MW, 4000) used as binder was atomized onto the bed by a two-fluid spray nozzle. The granulation experiments followed a 2(3) factorial design with triplicates at the center point and were carried out by varying the spray nozzle vertical position, the atomizing air flow rate and the binder feed rate. Granules were evaluated by their pharmacotechnical properties like size distribution, bulk and tapped densities, Carr index, Hausner ratio and tableting characteristics. Analysis of variance showed that granule sizes were affected by the PEG feed rate and atomizing air pressure at the significance levels of 1.0 and 5.0%. respectively, but spray nozzle distance to the substrate bed was not significant. The spray conditions also affected granule flow and consolidation properties. measured by the Carr index and Hausner ratio. Measured densities, Carr indexes and Hausner ratios proved that granules flowability and consolidation properties are adequate for pharmaceutical processing and tableting. Tablets prepared with acetaminophen-containing granules showed good properties and adequate release profiles in in vitro dissolution tests. The results indicate the suitability of spouted beds for the hot melt granulation of pharmaceutical coarse powders. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A general, fast wavelet-based adaptive collocation method is formulated for heat and mass transfer problems involving a steep moving profile of the dependent variable. The technique of grid adaptation is based on sparse point representation (SPR). The method is applied and tested for the case of a gas–solid non-catalytic reaction in a porous solid at high Thiele modulus. Accurate and convergent steep profiles are obtained for Thiele modulus as large as 100 for the case of slab and found to match the analytical solution.
Resumo:
Effective surface passivation of lead sulfide (PbS) nanocrystals (NCs) in an aqueous colloidal solution has been achieved following treatment with CdS precursors. The resultant photoluminescent emission displays two distinct components, one originating from the absorption band edge and the other from above the absorption band edge. We show that both of these components are strongly polarized but display distinctly different behaviours. The polarization arising from the band edge shows little dependence on the excitation energy while the polarization of the above-band-edge component is strongly dependent on the excitation energy. In addition, time-resolved polarization spectroscopy reveals that the above-band-edge polarization is restricted to the first couple of nanoseconds, while the band edge polarization is nearly constant over hundreds of nanoseconds. We recognize an incompatibility between the two different polarization behaviours, which enables us to identify two distinct types of surface-passivated PbS NC.
Resumo:
The Extended Weighted Residuals Method (EWRM) is applied to investigate the effects of viscous dissipation on the thermal development of forced convection in a porous-saturated duct of rectangular cross-section with isothermal boundary condition. The Brinkman flow model is employed for determination of the velocity field. The temperature in the flow field was computed by utilizing the Green’s function solution based on the EWRM. Following the computation of the temperature field, expressions are presented for the local Nusselt number and the bulk temperature as a function of the dimensionless longitudinal coordinate. In addition to the aspect ratio, the other parameters included in this computation are the Darcy number, viscosity ratio, and the Brinkman number.
Resumo:
Heat transfer and entropy generation analysis of the thermally developing forced convection in a porous-saturated duct of rectangular cross-section, with walls maintained at a constant and uniform heat flux, is investigated based on the Brinkman flow model. The classical Galerkin method is used to obtain the fully developed velocity distribution. To solve the thermal energy equation, with the effects of viscous dissipation being included, the Extended Weighted Residuals Method (EWRM) is applied. The local (three dimensional) temperature field is solved by utilizing the Green’s function solution based on the EWRM where symbolic algebra is being used for convenience in presentation. Following the computation of the temperature field, expressions are presented for the local Nusselt number and the bulk temperature as a function of the dimensionless longitudinal coordinate, the aspect ratio, the Darcy number, the viscosity ratio, and the Brinkman number. With the velocity and temperature field being determined, the Second Law (of Thermodynamics) aspect of the problem is also investigated. Approximate closed form solutions are also presented for two limiting cases of MDa values. It is observed that decreasing the aspect ratio and MDa values increases the entropy generation rate.