999 resultados para Population-monotonicity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Queen conch (Strombus gigas) stocks in the Florida Keys once supported commercial and recreational fisheries, but overharvesting has decimated this once abundant snail. Despite a ban on harvesting this species since 1985, the local conch population has not recovered. In addition, previous work has reported that conch located in nearshore Keys waters are incapable of spawning because of poor gonadal condition, although reproduction does occur offshore. Queen conch in other areas undergo ontogenetic migrations from shallow, nearshore sites to offshore habitats, but conch in the Florida Keys are prevented from doing so by Hawk Channel. The present study was initiated to determine the potential of translocating nonspawning nearshore conch to offshore sites in order to augment the spawning stock. We translocated adult conch from two nearshore sites to two offshore sites. Histological examinations at the initiation of this study confirmed that nearshore conch were incapable of reproduction, whereas offshore conch had normal gonads and thus were able to reproduce. The gonads of nearshore females were in worse condition than those of nearshore males. However, the gonadal condition of the translocated nearshore conch improved, and these animals began spawning after three months offshore. This finding suggests that some component of the nearshore environment (e.g., pollutants, temperature extremes, poor food or habitat quality) disrupts reproduction in conch, but that removal of nearshore animals to suitable offshore habitat can restore reproductive viability. These results indicate that translocations are preferable to releasing hatchery-reared juveniles because they are more cost-effective, result in a more rapid increase in reproductive output, and maintain the genetic integrity of the wild stock. Therefore, translocating nearshore conch to offshore spawning aggregations may be the key to expediting the recovery of queen conch stocks in the Florida Keys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fecundity (F, number of brooded eggs) and egg size were estimated for Hawaiian spiny lobster (Panulirus marginatus) at Necker Bank, North-western Hawaiian Islands (NWHI), in June 1999, and compared with previous (1978–81, 1991) estimates. Fecundity in 1999 was best described by the power equations F = 7.995 CL 2.4017, where CL is carapace length in mm (r2=0.900), and F = 5.174 TW 2.758, where TW is tail width in mm (r2=0.889) (both n=40; P< 0.001). Based on a log-linear model ANCOVA, size-specific fecundity in 1999 was 18% greater than in 1991, which in turn was 16% greater than during 1978–81. The additional increase in size-specific fecundity observed in 1999 is interpreted as evidence for further compensatory response to decreased lobster densities and increased per capita food resources that have resulted either from natural cyclic declines in productivity, high levels of harvest by the commercial lobster trap fishery, or both.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Goldband snapper (Pristipomoides multidens) collected from commercial trap and line fishermen off the Kimberley coast of northwestern Australia were aged by examination of sectioned otoliths (sagittae).A total of 3833 P. multidens, 80–701 mm fork length (98–805 mm total length), were examined from commercial catches from 1995 to 1999. The oldest fish was estimated to be age 30+ years. Validation of age estimates was achieved with marginal increment analysis. The opaque and translucent zones were each formed once per year and are considered valid annual growth increments (the translucent zone was formed once per year between January and May). A strong link between water temperature and translucent zone formation was evident in P. multidens. The von Bertalanffy growth function was used to describe growth from length-at-age data derived from sectioned otoliths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We surveyed variation at 13 microsatellite loci in approximately 7400 chinook salmon sampled from 52 spawning sites in the Fraser River drainage during 1988–98 to examine the spatial and temporal basis of population structure in the watershed. Genetically discrete chinook salmon populations were associated with almost all spawning sites, although gene flow within some tributaries prevented or limited differentiation among spawning groups. The mean FST value over 52 samples and 13 loci surveyed was 0.039. Geographic structuring of populations was apparent: distinct groups were identified in the upper, middle, and lower Fraser River regions, and the north, south, and lower Thompson River regions. The geographically and temporally isolated Birkenhead River population of the lower Fraser region was sufficiently genetically distinctive to be treated as a separate region in a hierarchial analysis of gene diversity. Approximately 95% of genetic variation was contained within populations, and the remainder was accounted for by differentiation among regions (3.1%), among populations within regions (1.3%), and among years within populations (0.5%).Analysis of allelic diversity and private alleles did not support the suggestion that genetically distinctive populations of chinook salmon in the south Thompson were the result of postglacial hybridization of ocean-type and stream-type chinook in the Fraser River drainage. However, the relatively small amount of differentiation among Fraser River chinook salmon populations supports the suggestion that gene flow among genetically distinct groups of postglacial colonizing groups of chinook salmon has occurred, possibly prior to colonization of the Fraser River drainage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variation at 13 microsatellite loci was previously surveyed in approximately 7400 chinook salmon (Oncorhynchus tshawytscha) sampled from 50 localities in the Fraser River drainage in southern British Columbia. Evaluation of the utility of the microsatellite variation for population-specific stock identification applications indicated that the accuracy of the stock composition estimates generally improved with an increasing number of loci used in the estimation procedure, but an increase in accuracy was generally marginal after eight loci were used. With 10–14 populations in a simulated fishery sample, the mean error in population-specific estimated stock composition with a 50-popula-tion baseline was <1.4%. Identification of individuals to specific populations was highest for lower Fraser River and lower and North Thompson River populations; an average of 70% of the individual fish were correctly assigned to specific populations. The average error of the estimated percentage for the seven populations present in a coded-wire tag sample was 2% per population. Estimation of stock composition in the lower river commercial net fishery prior to June is of key local fishery management interest. Chinook salmon from the Chilcotin River and Nicola River drainages were important contributors to the early commercial fishery in the lower river because they comprised approximately 50% of the samples from the net fishery prior to mid April.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cowcod (Sebastes levis) is a large (100-cm-FL), long-lived (maximum observed age 55 yr) demersal rockfish taken in multispecies commercial and recreational fisheries off southern and central California. It lives at 20–500 m depth: adults (>44 cm TL) inhabit rocky areas at 90–300 m and juveniles inhabit fine sand and clay at 40–100 m. Both sexes have similar growth and maturity. Both sexes recruit to the fishery before reaching full maturity. Based on age and growth data, the natural mortality rate is about M =0.055/yr, but the estimate is uncertain. Biomass, recruitment, and mortality during 1951–98 were estimated in a delay-difference model with catch data and abundance indices. The same model gave less precise estimates for 1916–50 based on catch data and assumptions about virgin biomass and recruitment such as used in stock reduction analysis. Abundance indices, based on rare event data, included a habitat-area–weighted index of recreational catch per unit of fishing effort (CPUE index values were 0.003–0.07 fish per angler hour), a standardized index of proportion of positive tows in CalCOFI ichthyoplankton survey data (binomial errors, 0–13% positive tows/yr), and proportion of positive tows for juveniles in bottom trawl surveys (binomial errors, 0–30% positive tows/yr). Cowcod are overfished in the southern California Bight; biomass during the 1998 season was about 7% of the virgin level and recent catches have been near 20 metric tons (t)/yr. Projections based on recent recruitment levels indicate that biomass will decline at catch levels > 5 t/yr. Trend data indicate that recruitment will be poor in the near future. Recreational fishing effort in deep water has increased and has become more effective for catching cowcod. Areas with relatively high catch rates for cowcod are fewer and are farther offshore. Cowcod die after capture and cannot be released alive. Two areas recently closed to bottom fishing will help rebuild the cowcod stock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The life history and population dynamics of the finetooth shark (Carcharhinus isodon) in the north-eastern Gulf of Mexico were studied by determining age, growth, size-at-maturity, natural mortality, productivity, and elasticity of vital rates of the population. The von Bertalanffy growth model was estimated as Lt=1559 mm TL (1–e–0.24 (t+2.07)) for females and Lt = 1337 mm TL (1–e–0.41 (t+1.39)) for males. For comparison, the Fabens growth equation was also fitted separately to observed size-at-age data, and the fits to the data were found to be similar. The oldest aged specimens were 8.0 and 8.1 yr, and theoretical longevity estimates were 14.4 and 8.5 yr for females and males, respectively. Median length at maturity was 1187 and 1230 mm TL, equivalent to 3.9 and 4.3 yr for males and females, respectively. Two scenarios, based on the results of the two equations used to describe growth, were considered for population modeling and the results were similar. Annual rates of survivorship estimated through five methods ranged from 0.850/yr to 0.607/yr for scenario 1 and from 0.840/yr to 0.590/yr for scenario 2. Productivities were 0.041/yr for scenario 1 and 0.038/yr for scenario 2 when the population level that produces maximum sustain-able yield is assumed to occur at an instantaneous total mortality rate (Z) equaling 1.5 M, and were 0.071/yr and 0.067/yr, when Z=2 M for scenario 1 and 2, respectively. Mean generation time was 6.96 yr and 6.34 yr for scenarios 1 and 2, respectively. Elasticities calculated through simulation of Leslie matrices averaged 12.6% (12.1% for scenario 2) for fertility, 47.7% (46.2% for scenario 2) for juvenile survival, and 39.7% (41.6% for scenario 2) for adult survival. In all, the finetooth shark exhibits life-history and population characteristics intermediate to those of sharks in the small coastal complex and those from some large coastal species, such as the blacktip shark (Carcharhinus limbatus).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We estimated the impact of striped bass (Morone saxatilis) predation on winter-run chinook salmon (Oncorhynchus tshawytscha) with a Bayesian population dynamics model using striped bass and winter-run chinook salmon population abundance data. Winter-run chinook salmon extinction and recovery probabilities under different future striped bass abundance levels were estimated by simulating from the posterior distribution of model parameters. The model predicts that if the striped bass population declines to 512,000 adults as expected in the absence of stocking, winter-run chinook salmon will have about a 28% chance of quasi-extinction (defined as three consecutive spawning runs of fewer than 200 adults) within 50 years. If stocking stabilizes the striped bass population at 700,000 adults, the predicted quasi-extinction probability is 30%. A more ambitious stocking program that maintains a population of 3 million adult striped bass would increase the predicted quasi-extinction probability to 55%. Extinction probability, but not recovery probability, was fairly insensitive to assumptions about density dependence. We conclude that winter-run chinook salmon face a serious extinction risk without augmentation of the striped bass population and that substantial increases in striped bass abundance could significantly increase the threat to winter-run chi-nook salmon if not mitigated by increasing winter chinook salmon survival in some other way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined seasonal and annual variation in numbers of Steller (northern) sea lions (Eumetopias jubatus) at the South Farallon Islands from counts conducted weekly from 1974 to 1996. Numbers of adult and subadult males peaked during the breeding season (May–July), whereas numbers of adult females and immature individuals peaked during the breeding season and from late fall through early winter (September–December). The seasonal pattern varied significantly among years for all sexes and age classes. From 1977 to 1996, numbers present during the breeding season decreased by 5.9% per year for adult females and increased by 1.9% per year for subadult males. No trend in numbers of adult males was detected. Numbers of immature individuals also declined by 4.5% per year during the breeding season but increased by 5.0% per year from late fall through early winter. Maximum number of pups counted declined significantly through time, although few pups were produced at the South Farallon Islands. The ratio of adult females to adult males averaged 5.2:1 and declined significantly with each year, whereas no trend in the ratio of pups to adult females was discernible. Further studies are needed to determine if reduced numbers of adult females in recent years have resulted from reduced survival of juvenile or adult females or from changes in the geographic distribution of females.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Status of the southeastern U.S. stock of red porgy (Pagrus pagrus) was estimated from fishery-dependent and fishery-independent data, 1972–97. Annual population numbers and fishing mortality rates at age were estimated from virtual population analysis (VPA) calibrated with fishery-independent data. For the VPA, a primary matrix of catch at age was based on age-length keys from fishery-independent samples; an alternate matrix was based on fishery-dependent keys. Additional estimates of stock status were obtained from a surplus-production model, also calibrated with fishery-independent indices of abundance. Results describe a dramatic increase in exploitation of this stock and concomitant decline in abundance. Estimated fully recruited fishing mortality rate (F) from the primary catch matrix increased from 0.10/yr in 1975 to 0.88/yr in 1997, and estimated static spawning potential ratio (SPR) declined from about 67% to about 18%. Estimated recruitment to age 1 declined from a peak of 3.0 million fish in 1973–74 to 94,000 fish in 1997, a decline of 96.9%. Estimated spawning-stock biomass declined from a peak of 3530 t in 1979 to 397 t in 1997, a decline of 88.8%. Results from the alternate catch matrix were similar. Retrospective patterns in the VPA suggest that the future estimates of this population decline will be severe, but may be less than present estimates. Long-term and marked declines in recruitment, spawning stock, and catch per unit of effort (both fishery-derived and fishery-independent)are consistent with severe overexploitation during a period of reduced recruitment. Although F prior to 1995 has generally been estimated at or below the current management criterion for overfishing (F equivalent to SPR=35%), the recent spawning-stock biomass is well below the biomass that could support maximum sustainable yield. Significant reductions in fishing mortality will be needed for rebuilding the southeastern U.S. stock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A total of 1006 king mackerel (Scomberomorus cavalla) representing 20 discrete samples collected between 1996 and 1998 along the east (Atlantic) and west (Gulf) coasts of Florida and the Florida Keys were assayed for allelic variation at seven nuclear-encoded microsatellites. No significant deviations from Hardy-Weinberg equilibrium expectations were found for six of the microsatellites, and genotypes at all microsatellites were independent. Allele distributions at each microsatellite were independent of sex and age of individuals. Homogeneity tests of spatial distributions of alleles at the microsatellites revealed two weakly divergent “genetic” subpopulations or stocks of king mackerel in Florida waters—one along the Atlantic coast and one along the Gulf coast. Homogeneity tests of allele distributions when samples were pooled along seasonal (temporal) boundaries, consistent with the temporal boundaries used currently for stock assessment and allocation of the king mackerel resource, were nonsignificant. The degree of genetic divergence between the two “genetic” stocks was small: on average, only 0.19% of the total genetic variance across all samples assayed occurred between the two regions. Cluster analysis, assignment tests, and spatial autocorrelation analysis did not generate patterns that were consistent with either geographic or spatial-temporal boundaries. King mackerel sampled from the Florida Keys could not be assigned unequivocally to either “genetic” stock. The genetic data were not consistent with current spatial-temporal boundaries employed in stock assessment and allocation of the king mackerel resource. The genetic differences between king mackerel in the Atlantic versus those in the Gulf most likely stem from reduced gene flow (migration) between the Atlantic and Gulf in relation to gene flow (migration) along the Atlantic and Gulf coasts of peninsular Florida. This difference is consistent with findings for other marine fishes where data indicate that the southern Florida peninsula serves (or has served) as a biogeographic boundary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Seasonal, interannual, decadal and centennial influences on population dynamics have been described for several species. It now seems possible to interpret environmental changes that initiate population change ...