946 resultados para Plants in winter
Resumo:
Photoselective plastic films with low transmission to far-red (FR) light (700-800 nm) are now available so that plants grown in greenhouses clad with such plastics exhibit reduced stem extension and, consequently, plant height. Here we compare the action of three FR-absorbing polythene films on extension growth of Petunia (Petunia X hybrida) cv. 'Express Blue' and Impatiens walleriana cv. 'Accent Deep Pink' with plants grown under a control polythene film (standard UVI/EVA film). Half of the plants under the control film were treated with a chemical plant growth regulator (PGR; diaminozide, B-Nine) and half were sprayed with water alone. Possible negative effects of such film plastics on flowering, and on fresh and dry weight accumulation, were also quantified. Plants were harvested destructively when all plants in each treatment had reached the first open flower stage. In Petunia, plant height was reduced by all three FR-filtering films and by PGR-treatment. The FR-filtering films giving the highest R:FR ratios also reduced plant height in Impatiens. Leaf number, leaf area and total dry Weight in both species. were greatest in the controls and smallest under films with the lowest PAR transmission. The film giving the highest R:FR ratio and PAR transmission also produced the most compact Petunia plants;, while the film. with. the lowest PAR transmission produced the least compact plants in both species. There was no significant effect of treatments on time to first flower in Impatiens. However, Petunia plants under low PAR transmission films took longer to flower. Plastic-films which filter out FR light to increase the R:FR ratio, combined With high PAR transmission, can therefore be used as an alternative to conventional PGRs.
Resumo:
Movements and activity patterns of an adult radio-tagged female brown bear accompanied by her cubs were documented for the first time in Rodopi area (NE Greece) from August 2000 to July 2002. Average daily movements were 2.45 +/- 2.26 SD km, (range 0.15-8.5 km). The longest daily range could be related to human disturbance (hunting activity). The longest seasonal distance (211 km), during Summer 2001 coincided with the dissolution of the family. With cubs, the female was more active during daytime (73 % of all radio-readings) than when solitary (28 %). The female switched to a more crepuscular behaviour, after separation from the yearling (July 2001). According to pooled data from 924 activity - recording sessions, during the whole monitoring period, the female was almost twice as active during day time while rearing cubs (51 % active) than when solitary (23 %). The autumn and early winter home range size of the family was larger (280 km(2)) than after the separation from the cubs (59 km(2)). During the family group phase, home range size varied from 258 km(2) in autumn to 40 km(2) in winter (average denning period lasted 107 days : December 2000-March 2001). The bear hibernated in the Bulgarian part of the Rodopi Range during winters of 2001 and 2002.
Resumo:
Botrytis cinerea occurred commonly on cultivated Primula ×polyantha seed. The fungus was mostly on the outside of the seed but sometimes was present within the seed. The fungus frequently caused disease at maturity in plants grown from the seed, demonstrated by growing plants in a filtered airflow, isolated from other possible sources of infection. Young, commercially produced P. ×polyantha plants frequently had symptomless B. cinerea infections spread throughout the plants for up to 3 months, with symptoms appearing only at flowering. Single genetic individuals of B. cinerea, as determined by DNA fingerprinting, often were dispersed widely throughout an apparently healthy plant. Plants could, however, contain more than one isolate.
Resumo:
Seventeen fungal isolates were tested in vitro as potential antagonists of two isolates of the root rot pathogen, Armillaria mellea. Some of the isolates were also added on mushroom composts with living mycelia to the roots of Armillaria-inoculated potted strawberry plants in the glasshouse to find out if they had the same degree of efficacy against the disease. Dactylium dendroides isolate SP was the most effective in reducing mycelial growth of A. mellea isolate 1 (Am1), followed by Trichoderma harzianum isolate Th2 and T. viride isolate Tv4. Th2, Th22, Tv3 and SP grew extensively over Am1 colonies, disintegrating the rhizomorphs. Isolate Tham1 of T hamatum was the most effective in reducing mycelial growth of A. mellea isolate 2 (Am2), followed by Tv3. Th12, Th22, Tv1, Tv3 and SP inhibited the initiation and growth of rhizomorphs of Am2. Regeneration tests showed that both Am1 and Am2 attacked by Trichoderma isolates and SP were no longer viable. Th23 and SP were almost as effective in vivo as in vitro. But isolate Co of Chaetomium olivaceum, which was ineffective in vitro, was found effective in vivo. Conversely, Th2, which exhibited good antagonistic activity in vitro, performed poorly in vivo. These results show that the in vitro and in vivo efficacies of potential antagonists may not necessarily be closely correlated. Hence, there is a danger that potentially effective isolates may be discarded if decisions are made only on the basis of preliminary screening tests carried out under laboratory conditions.
Resumo:
Modern studies of prebiotic non digestible carbohydrates continue to expand and demonstrate their colonic and systemic benefits. However, virtually nothing is known of their use among ancient populations. In this paper we discuss evidence for prebiotic use in the archaeological record from select areas of the world. It is suggested that members of our genus Homo would have had sufficient ecological opportunity to include prebiotic-bearing plants in diet as early as ~ 2 million years ago, but that significant dietary intake would not have taken place until the advent of technological advances that characterized the Upper Paleolithic of ~40,000 years ago. Throughout human evolution, hominid populations that diversified their diet to include prebiotic-bearing plants would have had a selective advantage over competitors.
Resumo:
To examine how sulfur deprivation may affect acrylamide formation in cooked potatoes, three varieties of potato were grown under conditions of either severe sulfur deprivation or an adequate supply of sulfur. In all three varieties sulfur deprivation led to a decrease in acrylamide formation, even though the levels of sugars, which are acrylamide precursors, were higher in tubers of the sulfur-deprived plants. In one variety the concentration of free asparagine, the other precursor for acrylamide, was also higher. There was a very close correlation between the concentration of asparagine in the tubers expressed as a proportion of the total free amino acid pool and the formation of acrylamide upon cooking, whereas sugars were poorly correlated with acrylamide. In potatoes, where concentrations of sugars are usually limiting, competition between asparagine and other amino acids participating in the Maillard reaction may be a key determinant of the amount of acrylamide that is formed during processing.
Resumo:
The project investigated whether it would be possible to remove the main technical hindrance to precision application of herbicides to arable crops in the UK, namely creating geo-referenced weed maps for each field. The ultimate goal is an information system so that agronomists and farmers can plan precision weed control and create spraying maps. The project focussed on black-grass in wheat, but research was also carried out on barley and beans and on wild-oats, barren brome, rye-grass, cleavers and thistles which form stable patches in arable fields. Farmers may also make special efforts to control them. Using cameras mounted on farm machinery, the project explored the feasibility of automating the process of mapping black-grass in fields. Geo-referenced images were captured from June to December 2009, using sprayers, a tractor, combine harvesters and on foot. Cameras were mounted on the sprayer boom, on windows or on top of tractor and combine cabs and images were captured with a range of vibration levels and at speeds up to 20 km h-1. For acceptability to farmers, it was important that every image containing black-grass was classified as containing black-grass; false negatives are highly undesirable. The software algorithms recorded no false negatives in sample images analysed to date, although some black-grass heads were unclassified and there were also false positives. The density of black-grass heads per unit area estimated by machine vision increased as a linear function of the actual density with a mean detection rate of 47% of black-grass heads in sample images at T3 within a density range of 13 to 1230 heads m-2. A final part of the project was to create geo-referenced weed maps using software written in previous HGCA-funded projects and two examples show that geo-location by machine vision compares well with manually-mapped weed patches. The consortium therefore demonstrated for the first time the feasibility of using a GPS-linked computer-controlled camera system mounted on farm machinery (tractor, sprayer or combine) to geo-reference black-grass in winter wheat between black-grass head emergence and seed shedding.
Resumo:
Many weeds occur in patches but farmers frequently spray whole fields to control the weeds in these patches. Given a geo-referenced weed map, technology exists to confine spraying to these patches. Adoption of patch spraying by arable farmers has, however, been negligible partly due to the difficulty of constructing weed maps. Building on previous DEFRA and HGCA projects, this proposal aims to develop and evaluate a machine vision system to automate the weed mapping process. The project thereby addresses the principal technical stumbling block to widespread adoption of site specific weed management (SSWM). The accuracy of weed identification by machine vision based on a single field survey may be inadequate to create herbicide application maps. We therefore propose to test the hypothesis that sufficiently accurate weed maps can be constructed by integrating information from geo-referenced images captured automatically at different times of the year during normal field activities. Accuracy of identification will also be increased by utilising a priori knowledge of weeds present in fields. To prove this concept, images will be captured from arable fields on two farms and processed offline to identify and map the weeds, focussing especially on black-grass, wild oats, barren brome, couch grass and cleavers. As advocated by Lutman et al. (2002), the approach uncouples the weed mapping and treatment processes and builds on the observation that patches of these weeds are quite stable in arable fields. There are three main aspects to the project. 1) Machine vision hardware. Hardware component parts of the system are one or more cameras connected to a single board computer (Concurrent Solutions LLC) and interfaced with an accurate Global Positioning System (GPS) supplied by Patchwork Technology. The camera(s) will take separate measurements for each of the three primary colours of visible light (red, green and blue) in each pixel. The basic proof of concept can be achieved in principle using a single camera system, but in practice systems with more than one camera may need to be installed so that larger fractions of each field can be photographed. Hardware will be reviewed regularly during the project in response to feedback from other work packages and updated as required. 2) Image capture and weed identification software. The machine vision system will be attached to toolbars of farm machinery so that images can be collected during different field operations. Images will be captured at different ground speeds, in different directions and at different crop growth stages as well as in different crop backgrounds. Having captured geo-referenced images in the field, image analysis software will be developed to identify weed species by Murray State and Reading Universities with advice from The Arable Group. A wide range of pattern recognition and in particular Bayesian Networks will be used to advance the state of the art in machine vision-based weed identification and mapping. Weed identification algorithms used by others are inadequate for this project as we intend to collect and correlate images collected at different growth stages. Plants grown for this purpose by Herbiseed will be used in the first instance. In addition, our image capture and analysis system will include plant characteristics such as leaf shape, size, vein structure, colour and textural pattern, some of which are not detectable by other machine vision systems or are omitted by their algorithms. Using such a list of features observable using our machine vision system, we will determine those that can be used to distinguish weed species of interest. 3) Weed mapping. Geo-referenced maps of weeds in arable fields (Reading University and Syngenta) will be produced with advice from The Arable Group and Patchwork Technology. Natural infestations will be mapped in the fields but we will also introduce specimen plants in pots to facilitate more rigorous system evaluation and testing. Manual weed maps of the same fields will be generated by Reading University, Syngenta and Peter Lutman so that the accuracy of automated mapping can be assessed. The principal hypothesis and concept to be tested is that by combining maps from several surveys, a weed map with acceptable accuracy for endusers can be produced. If the concept is proved and can be commercialised, systems could be retrofitted at low cost onto existing farm machinery. The outputs of the weed mapping software would then link with the precision farming options already built into many commercial sprayers, allowing their use for targeted, site-specific herbicide applications. Immediate economic benefits would, therefore, arise directly from reducing herbicide costs. SSWM will also reduce the overall pesticide load on the crop and so may reduce pesticide residues in food and drinking water, and reduce adverse impacts of pesticides on non-target species and beneficials. Farmers may even choose to leave unsprayed some non-injurious, environmentally-beneficial, low density weed infestations. These benefits fit very well with the anticipated legislation emerging in the new EU Thematic Strategy for Pesticides which will encourage more targeted use of pesticides and greater uptake of Integrated Crop (Pest) Management approaches, and also with the requirements of the Water Framework Directive to reduce levels of pesticides in water bodies. The greater precision of weed management offered by SSWM is therefore a key element in preparing arable farming systems for the future, where policy makers and consumers want to minimise pesticide use and the carbon footprint of farming while maintaining food production and security. The mapping technology could also be used on organic farms to identify areas of fields needing mechanical weed control thereby reducing both carbon footprints and also damage to crops by, for example, spring tines. Objective i. To develop a prototype machine vision system for automated image capture during agricultural field operations; ii. To prove the concept that images captured by the machine vision system over a series of field operations can be processed to identify and geo-reference specific weeds in the field; iii. To generate weed maps from the geo-referenced, weed plants/patches identified in objective (ii).
Resumo:
Studies have shown that natural ultraviolet (UV) radiation increases secondary products such as phenolics but can significantly inhibit biomass accumulation in lettuce plants. In the work presented here, the effect of UV radiation on phenolic concentration and biomass accumulation was assessed in relation to photosynthetic performance in red and green lettuce types. Lettuce plants in polythene clad tunnels were exposed to either ambient (UV transparent film) or UV-free conditions (UV blocking film). The study tested whether growth reduction in lettuce plants exposed to natural UV radiation is because of inhibition of photosynthesis by direct damage to the photosynthetic apparatus or by internal shading by anthocyanins. Ambient levels of UV radiation did not limit the efficiency of photosynthesis suggesting that phenolic compounds may effectively protect the photosynthetic apparatus. Growth inhibition does, however, occur in red lettuce and could be explained by the high metabolic cost of phenolic compounds for UV protection. From a commercial perspective, UV transparent and UV blocking films offer opportunities because, in combination, they could increase plant quality as well as productivity. Growing plants continuously under a UV blocking film, and then 6 days before the final harvest transferring them to a UV transparent film, showed that high yields and high phytochemical content can be achieved complementarily.
Resumo:
Integration of natural ventilation and daylighting in a single installation would make both technologies more attractive. One method for the integration is the use of concentric light pipe and ventilation stack. By constructing the light pipe using dichroic materials, the infrared part of the solar radiation is allowed to be transmitted to the stack but the visible light is guided by the light pipe into a room. The heat gain to the interior can be reduced and the thermal stack effect strengthened. Work presented here involved the experimental and computational evaluation of dichroic materials for enhancing both natural stack ventilation and daylighting. The transmittance of a dichroic light pipe was found to be similar to that of a light pipe with a 95% specular reflectance. The infra-red radiation transmitted through the dichroic material into a passive stack was found to enhance the natural ventilation flow by up to 14%. The effect is greater in summer than in winter, which is highly desirable as there is often a lack of driving force for natural stack ventilation in summer.
Resumo:
A time-dependent climate-change experiment with a coupled ocean–atmosphere general circulation model has been used to study changes in the occurrence of drought in summer in southern Europe and central North America. In both regions, precipitation and soil moisture are reduced in a climate of greater atmospheric carbon dioxide. A detailed investigation of the hydrology of the model shows that the drying of the soil comes about through an increase in evaporation in winter and spring, caused by higher temperatures and reduced snow cover, and a decrease in the net input of water in summer. Evaporation is reduced in summer because of the drier soil, but the reduction in precipitation is larger. Three extreme statistics are used to define drought, namely the frequency of low summer precipitation, the occurrence of long dry spells, and the probability of dry soil. The last of these is arguably of the greatest practical importance, but since it is based on soil moisture, of which there are very few observations, the authors’ simulation of it has the least confidence. Furthermore, long time series for daily observed precipitation are not readily available from a sufficient number of stations to enable a thorough evaluation of the model simulation, especially for the frequency of long dry spells, and this increases the systematic uncertainty of the model predictions. All three drought statistics show marked increases owing to the sensitivity of extreme statistics to changes in their distributions. However, the greater likelihood of long dry spells is caused by a tendency in the character of daily rainfall toward fewer events, rather than by the reduction in mean precipitation. The results should not be taken as firm predictions because extreme statistics for small regions cannot be calculated reliably from the output of the current generation of GCMs, but they point to the possibility of large increases in the severity of drought conditions as a consequence of climate change caused by increased CO2.
Resumo:
With the increasing frequency and magnitude of warmer days during the summer in the UK, bedding plants which were a traditional part of the urban green landscape are perceived as unsustainable and water-demanding. During recent summers when bans on irrigation have been imposed, use and sales of bedding plants have dropped dramatically having a negative financial impact on the nursery industry. Retaining bedding species as a feature in public and even private spaces in future may be conditional on them being managed in a manner that minimises their water use. Using Petunia x hybrida ‘Hurrah White’ we aimed to discover which irrigation approach was the most efficient for maintaining plants’ ornamental quality (flower numbers, size and longevity), shoot and root growth under water deficit and periods of complete water withdrawal. Plants were grown from plugs for 51 days in wooden rhizotrons (0.35 m (h) x 0.1 m (w) x 0.065 m (d)); the rhizotrons’ front comprised clear Perspex which enabled us to monitor root growth closely. Irrigation treatments were: 1. watering with the amount which constitutes 50% of container capacity by conventional surface drip-irrigation (‘50% TOP’); 2. 50% as sub-irrigation at 10 cm depth (‘50% SUB’); 3. ‘split’ irrigation: 25% as surface drip- and 25% as sub-irrigation at 15 cm depth (‘25/25 SPLIT’); 4. 25% as conventional surface drip-irrigation (‘25% TOP’). Plants were irrigated daily at 18:00 apart from days 34-36 (inclusive) when water was withdrawn for all the treatments. Plants in ‘50% SUB’ had the most flowers and their size was comparable to that of ‘50% TOP’. Differences between treatments in other ‘quality’ parameters (height, shoot number) were biologically small. There was less root growth at deeper soil surface levels for ‘50% TOP’ which indicated that irrigation methods like ‘50% SUB’ and ‘25/25 SPLIT’ and stronger water deficits encouraged deeper root growth. It is suggested that sub-irrigation at 10 cm depth with water amounts of 50% container capacity would result in the most root growth with the maximum flowering for Petunia. Leaf stomatal conductance appeared to be most sensitive to the changes in substrate moisture content in the deepest part of the soil profile, where most roots were situated.
Resumo:
This paper fully describes a nation-wide field study on building thermal environment and thermal comfort of occupant, which was carried out in summer 2005 and in winter 2006 respectively in China, illustrating the adaptive strategies adopted by occupants in domestic buildings in China. According to the climate division in China, the buildings in Beijing (BJ), Shanghai (SH), Wuhan (WH) and Chongqing (CQ), Guangzhou (GZ), Kunming (KM), were selected as targets which are corresponding to cold zone, hot summer and cold winter zone (SWC-SH, WH, CQ), hot summer and warm winter zone and temperate zone, respectively. The methodology used in the field study is the combination of subjective questionnaire regarding thermal sensation and adaptive approaches and physical environmental monitoring including indoor air temperature and relative humidity. A total of 1671 subjects participate in this investigation with more than 80% response rate in all surveyed cities. Both physiological and non-physiological factors (behavioural and psychological adaptations) have been analysed.
Resumo:
Starch is the most widespread and abundant storage carbohydrate in crops and its production is critical to both crop yield and quality. As regards the starch content in the seeds of crop plants, there are distinct difference between grasses (Poaceae) and dicots. However, few studies have described the evolutionary pattern of genes in the starch biosynthetic pathway in these two groups of plants. In this study, therefore, an attempt was made to compare the evolutionary rate, gene duplication and selective pattern of the key genes involved in this pathway between the two groups, using five grasses and five dicots as materials. The results showed (i) distinct differences in patterns of gene duplication and loss between grasses and dicots; duplication in grasses mainly occurred prior to the divergence of grasses, whereas duplication mostly occurred in individual species within the dicots; there is less gene loss in grasses than in dicots; (ii) a considerably higher evolutionary rate in grasses than in dicots in most gene families analyzed; (iii) evidence of a different selective pattern between grasses and dicots; positive selection may have occurred asymmetrically in grasses in some gene families, e.g. AGPase small subunit. Therefore, we deduced that gene duplication contributes to, and a higher evolutionary rate is associated with, the higher starch content in grasses. In addition, two novel aspects of the evolution of the starch biosynthetic pathway were observed.