916 resultados para Placer Gold
Resumo:
In this work we present core–shell nanowire arrays of gold coated with a nanometric layer of cobalt. Despite the extremely small Co volume, these core–shell nanowires display large magneto-optical activity and plasmonic resonance determined by the geometry of the structure. Therefore, we are able to tune both the plasmonic and magneto-optical response in the visible range. Through optical and ellipsometric measurements in transmission, and applying a magnetic field to the sample, it is possible to modulate the value of the phase angle (Del {Δ}) between the S and P polarised components. It was found that the core–shell sample produced an order of magnitude larger variation in Del with changing magnetic field direction, compared with hollow cobalt tubes. The enhancement of magneto optical properties through the plasmonic nature of the gold core is complemented with the ability to induce magnetic influence over optical properties via an externally applied field. Moreover, we demonstrate for the first time the ability to use the remanent magnetisation of the Co, in conjunction with the optical properties defined by the Au, to observe remanent optical states in this uniquely designed structure. This new class of magnetoplasmonic metamaterial has great potential in a wide range of applications, from bio-sensing to data storage due to the tuneable nature of multiple resonance modes and dual functionality.
Resumo:
The new Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2011 document recommends a combined assessment of chronic obstructive pulmonary disease (COPD) based on current symptoms and future risk.
A large database of primary-care COPD patients across the UK was used to determine COPD distribution and characteristics according to the new GOLD classification. 80 general practices provided patients with a Read code diagnosis of COPD. Electronic and hand searches of patient medical records were undertaken, optimising data capture.
Data for 9219 COPD patients were collected. For the 6283 patients with both forced expiratory volume in 1 s (FEV1) and modified Medical Research Council scores (mean¡SD age 69.2¡10.6 years, body mass index 27.3¡6.2 kg?m-2), GOLD 2011 group distributions were: A (low risk and fewer symptoms) 36.1%, B (low risk and more symptoms) 19.1%, C (high risk and fewer symptoms) 19.6% and D (high risk and more symptoms) 25.3%. This is in contrast with GOLD 2007 stage classification: I (mild) 17.1%, II (moderate) 52.2%, III (severe) 25.5% and IV (very severe) 5.2%. 20% of patients with FEV1 o50% predicted had more than two exacerbations in the previous 12 months. 70% of patients with FEV1 ,50% pred had fewer than two exacerbations in the previous 12 months.
This database, representative of UK primary-care COPD patients, identified greater proportions of patients in the mildest and most severe categories upon comparing 2011 versus 2007 GOLD classifications. Discordance between airflow limitation severity and exacerbation risk was observed.
Resumo:
In this paper, we probed surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) from probe molecule Rhodamine 6G (R6G) on self-standing Au nanorod array substrates made using a combination of anodization and potentiostatic electrodeposition. The initial substrates were embedded within a porous alumina template (AAO). By controlling the thickness of the AAO matrix, SEF and SERS were observed exhibiting an inverse relationship. SERS and SEF showed a non-linear response to the removal of AAO matrix due to an inhomogeneous plasmon activity across the nanorod which was supported by FDTD calculations. We showed that by optimizing the level of AAO thickness, we could obtain either maximized SERS, SEF or simultaneously observe both SERS and SEF together.
Resumo:
Background and purpose: Gold nanoparticles (GNPs) are novel agents that have been shown to cause radiosensitisation in vitro and in vivo. Tumour hypoxia is associated with radiation resistance and reduced survival in cancer patients. The interaction of GNPs with cells in hypoxia is explored.
Materials and methods: GNP uptake, localization, toxicity and radiosensitisation were assessed in vitro under oxic and hypoxic conditions.
Results: GNP cellular uptake was significantly lower under hypoxic than oxic conditions. A significant reduction in cell proliferation in hypoxic MDA-MB-231 breast cancer cells exposed to GNPs was observed. In these cells significant radiosensitisation occurred in normoxia and moderate hypoxia. However, in near anoxia no significant sensitisation occurred.
Conclusions: GNP uptake occurred in hypoxic conditions, causing radiosensitisation in moderate, but not extreme hypoxia in a breast cancer cell line. These findings may be important for the development of GNPs for cancer therapy.
Resumo:
Herein, a facile method was developed for preparing high concentration of monodispersed gold nanoparticles (NPs) at room temperature from gold(III) chloride by using different media based on N,N-dimethylformamide or water solutions containing a protic ionic liquid (PIL), namely, the octylammonium formate or the bis(2-ethyl-hexyl)ammonium formate, based on which both PILs were used as redox-active structuring media. The formation of gold NPs in these systems was then characterized using UV-visible spectroscopy, transmission electron microscopy, and dynamic light scattering. From these investigations, it appears that the structure and aggregation pathway of PILs in selected solvents affect strongly the formation, growth, the shape, and the size of gold NPs. In fact, by using this approach, the shape-/ size-controlled gold NPs (branched and spherical) can be generated under mild condition. This approach suggests also a wealth of potential for these designer nanomaterials within the biomedical, materials, and catalysis communities by using designer and safer media based on PILs.
Resumo:
Gold nanoparticles (GNPs), have been demonstrated as effective preclinical radiosensitising agents in a range of cell models and radiation sources. These studies have also highlighted difficulty in predicted cellular radiobiological responses mediated by GNPs, based on physical assumptions alone, and therefore suggest a significant underlying biological component of response. This study aimed to determine the role of mitochondrial function in GNP radiosensitisation. Using assays of DNA damage and mitochondrial function through levels of oxidation and loss of membrane potential, we demonstrate a potential role of mitochondria as a central biological mechanism of GNP mediated radiosensitisation.
Resumo:
Efficacy and safety of tiotropium+olodaterol fixed-dose combination (FDC) compared with the mono-components was evaluated in patients with moderate to very severe chronic obstructive pulmonary disease (COPD) in two replicate, randomised, double-blind, parallel-group, multicentre, phase III trials. Patients received tiotropium+olodaterol FDC 2.5/5 μg or 5/5 μg, tiotropium 2.5 μg or 5 μg, or olodaterol 5 μg delivered once-daily via Respimat inhaler over 52 weeks. Primary end points were forced expiratory volume in 1 s (FEV1) area under the curve from 0 to 3 h (AUC0-3) response, trough FEV1 response and St George's Respiratory Questionnaire (SGRQ) total score at 24 weeks. In total, 5162 patients (2624 in Study 1237.5 and 2538 in Study 1237.6) received treatment. Both FDCs significantly improved FEV1 AUC0-3 and trough FEV1 response versus the mono-components in both studies. Statistically significant improvements in SGRQ total score versus the mono-components were only seen for tiotropium+olodaterol FDC 5/5 μg. Incidence of adverse events was comparable between the FDCs and the mono-components. These studies demonstrated significant improvements in lung function and health-related quality of life with once-daily tiotropium+olodaterol FDC versus mono-components over 1 year in patients with moderate to very severe COPD.
Resumo:
With several gold nanoparticle-based therapies currently undergoing clinical trials, these treatments may soon be in the clinic as novel anticancer agents. Gold nanoparticles are the subject of a wide ranging international research effort with preclinical studies underway for multiple applications including photoablation, diagnostic imaging, radiosensitization and multifunctional drug-delivery vehicles. These applications require an increasingly complex level of surface modification in order to achieve efficacy and limit off-target toxicity. This review will discuss the main obstacles in relation to surface functionalization and the chemical approaches commonly utilized. Finally, we review a range of recent preclinical studies that aim to advance gold nanoparticle treatments toward the clinic.
Resumo:
Nanoparticles offer alternative options in cancer therapy both as drug delivery carriers and as direct therapeutic agents for cancer cell inactivation. More recently, gold nanoparticles (AuNPs) have emerged as promising radiosensitizers achieving significantly elevated radiation dose enhancement factors when irradiated with both kilo-electron-volt and mega-electronvolt X-rays. Use of AuNPs in radiobiology is now being intensely driven by the desire to achieve precise energy deposition in tumours. As a consequence, there is a growing demand for efficient and simple techniques for detection, imaging and characterization of AuNPs in both biological and tumour samples. Spatially accurate imaging on the nanoscale poses a serious challenge requiring high- or super-resolution imaging techniques. In this mini review, we discuss the challenges in using AuNPs as radiosensitizers as well as various current and novel imaging techniques designed to validate the uptake, distribution and localization in mammalian cells. In our own work, we have used multiphoton excited plasmon resonance imaging to map the AuNP intracellular distribution. The benefits and limitations of this approach will also be discussed in some detail. In some cases, the same "excitation" mechanism as is used in an imaging modality can be harnessed tomake it also a part of therapymodality (e.g. phototherapy)-such examples are discussed in passing as extensions to the imaging modality concerned.
Resumo:
The novel long-acting β2-agonist olodaterol demonstrated an acceptable safety profile in short-term phase II clinical studies. This analysis of four randomized, double-blind, placebo-controlled, parallel-group, phase III studies (1222.11, NCT00782210; 1222.12, NCT00782509; 1222.13, NCT00793624; 1222.14, NCT00796653) evaluated the long-term safety of olodaterol once daily (QD) in a large cohort of patients with moderate to very severe (Global initiative for chronic Obstructive Lung Disease 2-4) chronic obstructive pulmonary disease (COPD). The studies compared olodaterol (5 or 10 μg) QD via Respimat®, formoterol 12 μg twice daily (BID) via Aerolizer® (1222.13 and 1222.14), and placebo for 48 weeks. Patients continued receiving background maintenance therapy, with ∼60% receiving concomitant cardiovascular therapy and 25% having a history of concomitant cardiac disease. Pre-specified analyses of pooled data assessed the adverse events (AEs) and serious AEs in the whole population, and in subgroups with cardiac disease, along with in-depth electrocardiogram and Holter monitoring. In total, 3104 patients were included in the safety analysis: 876 received olodaterol 5 μg, 883 received olodaterol 10 μg, 885 received placebos, and 460 received formoterol 12 μg BID. Overall incidence of on-treatment AEs (71.2%), serious AEs (16.1%), and deaths (1.7%) were balanced across treatment groups. Respiratory and cardiovascular AEs, including major adverse cardiac events, were reported at similar frequencies in placebo and active treatment groups. The safety profiles of both olodaterol 5 μg (marketed and registered dose) and 10 μg QD delivered via Respimat® are comparable to placebo and formoterol BID in this population, with no safety signals identified.
Resumo:
The use of anodic stripping voltammetry (ASV)has been proven in the past to be a precise and sensitive analytical method with an excellent limit of detection. Electrochemical sensors could help to avoid expensive and time consuming procedures as sample taking and storage and provide a both sensitive and reliable method for the direct monitoring of heavy metals in the aquatic environment. Solid electrodes which have been used in this work, were produced using previously developed methods. Commercially available and newly designed, screen printed carbon and gold plated working electrodes (WE) were compared. Good results were achieved with the screen printed and plated electrodes under conditions optimized for each electrode material. The electrode stability, reproducibility of single measurements and the limit of detection obtained for Pb were satisfactory (3*10-6mol/l on screen printed carbon WEs after 60 s of deposition and 6*10-6 mol/l on gold plated WEs after 5 min of deposition). Complete 3-electrode-sets (counter, reference and working electrode) were screen printed on different substrates (glass, polycarbonate and alumina). Also here, both carbon and gold were used as WE. Using 3-electrode-sets with a gold plated WE on glass was a limit of detection of 7*10-7 mol/l was achieved after only 60 s of deposition.
Resumo:
The ability to reactivate, stabilize and increase the lifetime of gold catalysts by dispersing large, inactive gold nanoparticles to smaller nanoparticles provides an opportunity to make gold catalysts more practical for industrial applications. Previously it has been demonstrated that mild treatment with iodomethane (CH3I) (J. Am. Chem. Soc., 2009, 131, 6973; Angew. Chem. Int. Ed., 2011, 50, 8912) was able to re-disperse gold on carbon and metal oxide supports. In the current work, we show that this technique can be applied to re-disperse gold on a ‘mixed’ metal oxide, namely a mechanical mixture of ceria, zirconia and titania. Characterization was conducted to gage the impact of the iodomethane (CH3I) treatment on a previously sintered catalyst.