936 resultados para Pattern recognition, cluster finding, calibration and fitting methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a method for brain atlas deformation in the presence of large space-occupying tumors, based on an a priori model of lesion growth that assumes radial expansion of the lesion from its starting point. Our approach involves three steps. First, an affine registration brings the atlas and the patient into global correspondence. Then, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. The last step is the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. Results show that a good registration is performed and that the method can be applied to automatic segmentation of structures and substructures in brains with gross deformation, with important medical applications in neurosurgery, radiosurgery, and radiotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new non parametric atlas registration framework, derived from the optical flow model and the active contour theory, applied to automatic subthalamic nucleus (STN) targeting in deep brain stimulation (DBS) surgery. In a previous work, we demonstrated that the STN position can be predicted based on the position of surrounding visible structures, namely the lateral and third ventricles. A STN targeting process can thus be obtained by registering these structures of interest between a brain atlas and the patient image. Here we aim to improve the results of the state of the art targeting methods and at the same time to reduce the computational time. Our simultaneous segmentation and registration model shows mean STN localization errors statistically similar to the most performing registration algorithms tested so far and to the targeting expert's variability. Moreover, the computational time of our registration method is much lower, which is a worthwhile improvement from a clinical point of view.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reliable and objective assessment of chronic disease state has been and still is a very significant challenge in clinical medicine. An essential feature of human behavior related to the health status, the functional capacity, and the quality of life is the physical activity during daily life. A common way to assess physical activity is to measure the quantity of body movement. Since human activity is controlled by various factors both extrinsic and intrinsic to the body, quantitative parameters only provide a partial assessment and do not allow for a clear distinction between normal and abnormal activity. In this paper, we propose a methodology for the analysis of human activity pattern based on the definition of different physical activity time series with the appropriate analysis methods. The temporal pattern of postures, movements, and transitions between postures was quantified using fractal analysis and symbolic dynamics statistics. The derived nonlinear metrics were able to discriminate patterns of daily activity generated from healthy and chronic pain states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fetal MRI reconstruction aims at finding a high-resolution image given a small set of low-resolution images. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has considered several regularization terms s.a. Dirichlet/Laplacian energy, Total Variation (TV)- based energies and more recently non-local means. Although TV energies are quite attractive because of their ability in edge preservation, standard explicit steepest gradient techniques have been applied to optimize fetal-based TV energies. The main contribution of this work lies in the introduction of a well-posed TV algorithm from the point of view of convex optimization. Specifically, our proposed TV optimization algorithm or fetal reconstruction is optimal w.r.t. the asymptotic and iterative convergence speeds O(1/n2) and O(1/√ε), while existing techniques are in O(1/n2) and O(1/√ε). We apply our algorithm to (1) clinical newborn data, considered as ground truth, and (2) clinical fetal acquisitions. Our algorithm compares favorably with the literature in terms of speed and accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The processing of human bodies is important in social life and for the recognition of another person's actions, moods, and intentions. Recent neuroimaging studies on mental imagery of human body parts suggest that the left hemisphere is dominant in body processing. However, studies on mental imagery of full human bodies reported stronger right hemisphere or bilateral activations. Here, we measured functional magnetic resonance imaging during mental imagery of bilateral partial (upper) and full bodies. Results show that, independently of whether a full or upper body is processed, the right hemisphere (temporo-parietal cortex, anterior parietal cortex, premotor cortex, bilateral superior parietal cortex) is mainly involved in mental imagery of full or partial human bodies. However, distinct activations were found in extrastriate cortex for partial bodies (right fusiform face area) and full bodies (left extrastriate body area). We propose that a common brain network, mainly on the right side, is involved in the mental imagery of human bodies, while two distinct brain areas in extrastriate cortex code for mental imagery of full and upper bodies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The purpose of this study is to explore the periodical patterns of events and deaths related to cardiovascular disease (CVD), acute myocardial infarction (AMI) and stroke in Swiss adults (≥ 18 years). METHODS: Mortality data for period 1969-2007 (N=869,863 CVD events) and hospitalization data for period 1997-2008 (N=959,990 CVD events) were used. The annual, weekly and circadian distribution of CVD-related deaths and events were assessed. Multivariate analysis was conducted using multinomial logistic regression adjusting for age, gender and calendar year and considering deaths from respiratory diseases, accidents or other causes as competitive events. RESULTS: CVD deaths and hospitalizations occurred less frequently in the summer months. Similar patterns were found for AMI and stroke. No significant weekly variation for CVD deaths was found. Stratification by age and gender showed subjects aged <65 years to present a higher probability of dying on Mondays and Saturday, only for men. This finding was confirmed after multivariate adjustment. Finally, a circadian variation in CVD mortality was observed, with a first peak in the morning (8-12 am) and a smaller second peak in the late afternoon (2-6 pm). This pattern persisted after multivariate adjustment and was more pronounced for AMI than for stroke. CONCLUSION: There is a periodicity of hospitalizations and deaths related to CVD, AMI and stroke in Switzerland. This pattern changes slightly according to the age and sex of the subjects. Although the underlying mechanisms are not fully identified, preventive measures should take into account these aspects to develop better strategies of prevention and management of CVD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inductively Coupled Plasma Optical Emission Spectrometry was used to determine Ca, Mg, Mn, Fe, Zn and Cu in samples of processed and natural coconut water. The sample preparation consisted in a filtration step followed by a dilution. The analysis was made employing optimized instrumental parameters and the results were evaluated using methods of Pattern Recognition. The data showed common concentration values for the analytes present in processed and natural samples. Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) indicated that the samples of different kinds were statistically different when the concentrations of all the analytes were considered simultaneously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemometric activities in Brazil are described according to three phases: before the existence of microcomputers in the 1970s, through the initial stages of microcomputer use in the 1980s and during the years of extensive microcomputer applications of the ´90s and into this century. Pioneering activities in both the university and industry are emphasized. Active research areas in chemometrics are cited including experimental design, pattern recognition and classification, curve resolution for complex systems and multivariate calibration. New trends in chemometrics, especially higher order methods for treating data, are emphasized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An activity for introducing hierarchical cluster analysis (HCA) and principal component analysis (PCA) during the Instrumental Analytical Chemistry course is presented. The posed problem involves the discrimination of mineral water samples according to their geographical origin. Thirty-seven samples of 9 different brands were considered and the results from the determination of Na, K, Mg, Ca, Sr and Ba were taken into account. Non-supervised methods for pattern recognition were explored to construct a dendrogram, score and loading plots. The devised activity can be adopted for introducing Chemometrics devoted to data handling, stressing its importance in the context of modern Analytical Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monitoring of sewage sludge has proved the presence of many polar anthropogenic pollutants since LC/MS techniques came into routine use. While advanced techniques may improve characterizations, flawed sample processing procedures, however, may disturb or disguise the presence and fate of many target compounds present in this type of complex matrix before analytical process starts. Freeze-drying or oven-drying, in combination with centrifugation or filtration as sample processing techniques were performed followed by visual pattern recognition of target compounds for assessment of pretreatment processes. The results shown that oven-drying affected the sludge characterization, while freeze-drying led to less analytical misinterpretations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The determination of volumetric water content of soils is an important factor in irrigation management. Among the indirect methods for estimating, the time-domain reflectometry (TDR) technique has received a significant attention. Like any other technique, it has advantages and disadvantages, but its greatest disadvantage is the need of calibration and high cost of acquisition. The main goal of this study was to establish a calibration model for the TDR equipment, Trase System Model 6050X1, to estimate the volumetric water content in a Distroferric Red Latosol. The calibration was carried out in a laboratory with disturbed soil samples under study, packed in PVC columns of a volume of 0.0078m³. The TDR probes were handcrafted with three rods and 0.20m long. They were vertically installed in soil columns, with a total of five probes per column and sixteen columns. The weightings were carried out in a digital scale, while daily readings of dielectric constant were obtained in TDR equipment. The linear model θν = 0.0103 Ka + 0.1900 to estimate the studied volumetric water content showed an excellent coefficient of determination (0.93), enabling the use of probes in indirect estimation of soil moisture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: to evaluate a one year experience with inguinal hernia repair, in patients of > 50years, with respect to the type of inguinal hernia, type of surgery, postoperative complications and recurrence. METHODS: a prospective descriptive study of patients (n=57) > 50 years operated for inguinal hernia during a one year period. Tension-free meshplasty and herniorrhaphy, using 3"x6" polypropylene mesh and 2-0 polypropylene suture, were performed in elective and emergency surgery respectively. Follow-up visits were scheduled at six weeks, three and six months postoperatively. RESULTS: the most representative age group was 61-70 years, and all patients were male. 52 (91.22%) patients had unilateral inguinal hernias, while five (8.77%) had bilateral hernias. In 50 (87.71%) patients, the hernia was uncomplicated, while seven (12.28%) patients presented with some complication such as obstruction or strangulation. Elective surgery was performed in 50 (87.71%) patients while seven (12.28%) patients were operated in emergency. Postoperatively, 50 (87.7%) patients had uneventful recovery, while seven (12.28%) patients developed some complications which were treated conservatively. Mean hospital stay was six days. One recurrence was observed and there was no peri/postoperative death. CONCLUSION: tension-free meshplasty and herniorrhaphy are safe, simple and applicable even in elderly patients after adequate pre-operative assessment and optimization. Although associated with longer hospital stay, the mortality rate is nil and complication as well as recurrence rate is low. Hence, timely repair is necessary in elderly patients even in those with comorbid conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The usage of digital content, such as video clips and images, has increased dramatically during the last decade. Local image features have been applied increasingly in various image and video retrieval applications. This thesis evaluates local features and applies them to image and video processing tasks. The results of the study show that 1) the performance of different local feature detector and descriptor methods vary significantly in object class matching, 2) local features can be applied in image alignment with superior results against the state-of-the-art, 3) the local feature based shot boundary detection method produces promising results, and 4) the local feature based hierarchical video summarization method shows promising new new research direction. In conclusion, this thesis presents the local features as a powerful tool in many applications and the imminent future work should concentrate on improving the quality of the local features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis researches automatic traffic sign inventory and condition analysis using machine vision and pattern recognition methods. Automatic traffic sign inventory and condition analysis can be used to more efficient road maintenance, improving the maintenance processes, and to enable intelligent driving systems. Automatic traffic sign detection and classification has been researched before from the viewpoint of self-driving vehicles, driver assistance systems, and the use of signs in mapping services. Machine vision based inventory of traffic signs consists of detection, classification, localization, and condition analysis of traffic signs. The produced machine vision system performance is estimated with three datasets, from which two of have been been collected for this thesis. Based on the experiments almost all traffic signs can be detected, classified, and located and their condition analysed. In future, the inventory system performance has to be verified in challenging conditions and the system has to be pilot tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human activity recognition in everyday environments is a critical, but challenging task in Ambient Intelligence applications to achieve proper Ambient Assisted Living, and key challenges still remain to be dealt with to realize robust methods. One of the major limitations of the Ambient Intelligence systems today is the lack of semantic models of those activities on the environment, so that the system can recognize the speci c activity being performed by the user(s) and act accordingly. In this context, this thesis addresses the general problem of knowledge representation in Smart Spaces. The main objective is to develop knowledge-based models, equipped with semantics to learn, infer and monitor human behaviours in Smart Spaces. Moreover, it is easy to recognize that some aspects of this problem have a high degree of uncertainty, and therefore, the developed models must be equipped with mechanisms to manage this type of information. A fuzzy ontology and a semantic hybrid system are presented to allow modelling and recognition of a set of complex real-life scenarios where vagueness and uncertainty are inherent to the human nature of the users that perform it. The handling of uncertain, incomplete and vague data (i.e., missing sensor readings and activity execution variations, since human behaviour is non-deterministic) is approached for the rst time through a fuzzy ontology validated on real-time settings within a hybrid data-driven and knowledgebased architecture. The semantics of activities, sub-activities and real-time object interaction are taken into consideration. The proposed framework consists of two main modules: the low-level sub-activity recognizer and the high-level activity recognizer. The rst module detects sub-activities (i.e., actions or basic activities) that take input data directly from a depth sensor (Kinect). The main contribution of this thesis tackles the second component of the hybrid system, which lays on top of the previous one, in a superior level of abstraction, and acquires the input data from the rst module's output, and executes ontological inference to provide users, activities and their in uence in the environment, with semantics. This component is thus knowledge-based, and a fuzzy ontology was designed to model the high-level activities. Since activity recognition requires context-awareness and the ability to discriminate among activities in di erent environments, the semantic framework allows for modelling common-sense knowledge in the form of a rule-based system that supports expressions close to natural language in the form of fuzzy linguistic labels. The framework advantages have been evaluated with a challenging and new public dataset, CAD-120, achieving an accuracy of 90.1% and 91.1% respectively for low and high-level activities. This entails an improvement over both, entirely data-driven approaches, and merely ontology-based approaches. As an added value, for the system to be su ciently simple and exible to be managed by non-expert users, and thus, facilitate the transfer of research to industry, a development framework composed by a programming toolbox, a hybrid crisp and fuzzy architecture, and graphical models to represent and con gure human behaviour in Smart Spaces, were developed in order to provide the framework with more usability in the nal application. As a result, human behaviour recognition can help assisting people with special needs such as in healthcare, independent elderly living, in remote rehabilitation monitoring, industrial process guideline control, and many other cases. This thesis shows use cases in these areas.