985 resultados para Parallel computation
Resumo:
High-quality Ge film was epitaxially grown on silicon on insulator using the ultrahigh vacuum chemical vapor deposition. In this paper, we demonstrated that the efficient 1 4 germanium-on-silicon p-i-n photodetector arrays with 1.0 mu m Ge film had a responsivity as high as 0.65 A/W at 1.31 mu m and 0.32 A/W at 1.55 mu m, respectively. The dark current density was about 0.75 mA/cm(2) at 0 V and 13.9 mA/cm(2) at 1.0 V reverse bias. The detectors with a diameter of 25 mu m were measured at 1550 nm incident light under 0 V bias, and the result showed that the 3-dB bandwidth is 2.48 GHz. At a reverse bias of 3 V, the bandwidth is about 13.3 GHz. The four devices showed a good consistency.
Resumo:
We show that the Coulomb blockade in parallel dots pierced by magnetic flux Phi completely blocks the resonant current for any value of Phi except for integer multiples of the flux quantum Phi(0). This non-analytic (switching) dependence of the current on Phi arises only when the dot states that carry the current are of the same energy. The time needed to reach the steady state, however, diverges when Phi -> n Phi(0). Copyright (C) EPLA, 2009
Resumo:
A programmable vision chip with variable resolution and row-pixel-mixed parallel image processors is presented. The chip consists of a CMOS sensor array, with row-parallel 6-bit Algorithmic ADCs, row-parallel gray-scale image processors, pixel-parallel SIMD Processing Element (PE) array, and instruction controller. The resolution of the image in the chip is variable: high resolution for a focused area and low resolution for general view. It implements gray-scale and binary mathematical morphology algorithms in series to carry out low-level and mid-level image processing and sends out features of the image for various applications. It can perform image processing at over 1,000 frames/s (fps). A prototype chip with 64 x 64 pixels resolution and 6-bit gray-scale image is fabricated in 0.18 mu m Standard CMOS process. The area size of chip is 1.5 mm x 3.5 mm. Each pixel size is 9.5 mu m x 9.5 mu m and each processing element size is 23 mu m x 29 mu m. The experiment results demonstrate that the chip can perform low-level and mid-level image processing and it can be applied in the real-time vision applications, such as high speed target tracking.
Resumo:
The thermal entanglement in a two-qubit Heisenberg XXZ spin chain is investigated under an inhomogeneous magnetic field b. We show that the ground-state entanglement is independent of the interaction of z-component J(z). The thermal entanglement at the fixed temperature can be enhanced when J(z) increases. We strictly show that for any temperature T and J(z), the entanglement is symmetric with respect to zero inhomogeneous magnetic field, and the critical inhomogeneous magnetic field b(c) is independent of J(z). The critical magnetic field B-c increases with the increasing parallel to b parallel to but the maximum entanglement value that the system can arrive at becomes smaller.
Resumo:
A new device of two parallel distributed feedback (DFB) lasers integrated monolithically with Y-branch waveguide coupler was fabricated by means of quantum well intermixing. Optical microwave signal was generated in the Y-branch waveguide coupler through frequency beating of the two laser modes coming from two DFB laser in parallel, which had a small difference in frequency. Continuous rapid tuning of optical microwave signal from 13 to 42 GHz were realized by adjusting independently the driving currents injected into the two DFB lasers.
Resumo:
We have studied the equilibrium and nonequilibrium electronic transports through a double quantum dot coupled to leads in a symmetrical parallel configuration in the presence of both the inter- and the intradot Coulomb interactions. The influences of the interdot interaction and the difference between dot levels on the local density of states (LDOS) and the differential conductance are paid special attention. We find an interesting zero-bias maximum of the differential conductance induced by the interdot interaction, which can be interpreted in terms of the LDOS of the two dots. Due to the presence of the interdot interaction, the LDOS peaks around the dot levels epsilon(i) are split, and as a result, the most active energy level which supports the transport is shifted near to the Fermi level of the leads in the equilibrium situation. (c) 2006 American Institute of Physics.
Resumo:
The thermal entanglement in a two-spin-qutrit system with two spins coupled by exchange interaction under a magnetic field in an arbitrary direction is investigated. Negativity, the measurement of entanglement is calculated. We find that for any temperature the evolvement of negativity is symmetric with respect to magnetic field. The behavior of negativity is presented for four different cases. The results show that for different temperature; different magnetic field give maximum entanglement. Both the parallel and antiparallel magnetic field cases are investigated qualitatively (not quantitatively) in detail, we find that the entanglement may be enhanced under an antiparallel magnetic field.
Resumo:
Guest host polymer thin films of polymethyl methacrylate (PMMA) incorporated with (4'-nitrobenzene)-3-azo-9-ethylcarbazole (NAEC) were fabricated by spin coating and then poled by the method of corona-onset poling at elevated temperature. The absorption mechanism of the polymeric film, which is very important for the optical transmission losses and directly relates to the orientation of chromophore NAEC in polymer PMMA, was investigated in detail. From the UV-visible absorption spectra for NAEC/PMMA film before and after being poled, we determined the change of absorption coefficient kappa with the wavelength and approximately calculated the maximum absorption A(parallel tomax) as 3.46 for incident light propagating parallel through the film, i.e. the ordinary polarized light, which cannot be directly measured in the spectro photometer. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Based on the analytical solution to the time-dependent Schrodinger equations, we evaluate the holonomic quantum computation beyond the adiabatic limit. Besides providing rigorous confirmation of the geometrical prediction of holonomies, the present dynamical resolution offers also a practical means to study the nonadiabaticity induced effects for the universal qubit operations.
Resumo:
We propose a nonadiabatic scheme for geometric quantum computation with trapped ions. By making use of the Aharonov-Anandan phase, the proposed scheme not only preserves the globally geometric nature in quantum computation, but also provides the advantage of nonadiabaticity that overcomes the problem of slow evolution in the existing adiabatic schemes. Moreover, the present scheme requires only two atomic levels in each ion, making it an appealing candidate for quantum computation.
Resumo:
Based on an idea that spatial separation of charge states can enhance quantum coherence, we propose a scheme for a quantum computation with the quantum bit (qubit) constructed from two coupled quantum dots. Quantum information is stored in the electron-hole pair state with the electron and hole located in different dots, which enables the qubit state to be very long-lived. Universal quantum gates involving any pair of qubits are realized by coupling the quantum dots through the cavity photon which is a hopeful candidate for the transfer of long-range information. The operation analysis is carried out by estimating the gate time versus the decoherence time.
Resumo:
A novel analog-computation system using a quantum-dot cell network is proposed to solve complex problems. Analog computation is a promising method for solving a mathematical problem by using a physical system analogous to the problem. We designed a novel quantum-dot cell consisting of three-stacked. quantum dots and constructed a cell network utilizing the nearest-neighbor interactions between the cells. We then mapped a graph 3-colorability problem onto the network so that the single-electron configuration of the network in the ground state corresponded to one of the solutions. We calculated the ground state of the cell network and found solutions to the problems. The results demonstrate that analog computation is a promising approach for solving complex problems.
Resumo:
The finite-difference time domain (FDTD) technique and the Pade approximation with Baker's algorithm are used to calculate the mode frequencies and quality factors of cavities. Comparing with the fast Fourier transformation/Pade method, we find that the Fade approximation and the Baker's algorithm can obtain exact resonant frequencies and quality factors based on a much shorter time record of the FDTD output.
Resumo:
A parallel optical communication subsystem based on a 12 channels parallel optical transmitter module and a 12 channels parallel optical receiver module can be used as a 10Gbps STM-64 or an OC-192 optical transponder. The bit error rate of this parallel optical communication subsystem is about 0 under the test by SDH optical transport tester during three hours and eighteen minutes.
Resumo:
A new 12 channels parallel optical transmitter module in which a Vertical Cavity Surface Emitting Laser (VCSEL) has been selected as the optical source is capable of transmitting 37.5Gbps date over hundreds meters. A new 12 channels parallel optical receiver module in which a GaAs PIN (p-intrinsic-n-type) array has been selected as the optical receiver unit is capable of responding to 30Gbps date. A transmission system based on a 12 channels parallel optical transmitter module and a 12 channels parallel optical receiver module can be used as a 10Gbps STM-64 or an OC-192 optical transponder. The parallel optical modules and the parallel optical transmission system have passed the test in laboratory.