980 resultados para Packet dropping (RED, Tail-drop)
Resumo:
In this paper, we review our recent experimental work on coherent and blue phase liquid crystal lasers.We will present results on thin-film photonic band edge lasing devices using dye-doped low molar mass liquid crystals in self-organised chiral nematic and blue phases. We show that high Q-factor lasers can be achieved in these materials and demonstrate that a single mode output with a very narrow line width can be readily achievable in well-aligned mono-domain samples. Further, we have found that the performance of the laser, i.e. the slope efficiency and the excitation threshold, are dependent upon the physical parameters of the low molar mass chiral nematic liquid crystals. Specifically, slope efficiencies greater than 60% could be achieved depending upon the materials used and the device geometry employed. We will discuss the important parameters of the liquid crystal host/dye guest materials and device configuration that are needed to achieve such high slope efficiencies. Further we demonstrate how the wavelength of the laser can be tuned using an in-plane electric field in a direction perpendicular to the helix axis via a flexoelectric mechanism as well as thermally using thermochromic effects. We will then briefly outline data on room temperature blue phase lasers and further show how liquid crystal/lenslet arrays have been used to demonstrate 2D laser emission of any desired wavelength. Finally, we present preliminary data on LED/incoherent pumping of RG liquid crystal lasers leading to a continuous wave output. © 2009 SPIE.
Resumo:
The jetting of dilute polymer solutions in drop-on-demand printing is investigated. A quantitative model is presented which predicts three different regimes of behaviour depending upon the jet Weissenberg number Wi and extensibility of the polymer molecules. In regime I (Wi < ½) the polymer chains are relaxed and the fluid behaves in a Newtonian manner. In regime II (½ < Wi < L) where L is the extensibility of the polymer chain the fluid is viscoelastic, but the polymer do not reach their extensibility limit. In regime III (Wi > L) the chains remain fully extended in the thinning ligament. The maximum polymer concentration at which a jet of a certain speed can be formed scales with molecular weight to the power of (1-3ν), (1-6ν) and -2ν in the three regimes respectively, where ν is the solvent quality coefficient. Experimental data obtained with solutions of mono-disperse polystyrene in diethyl phthalate with molecular weights between 24 - 488 kDa, previous numerical simulations of this system, and previously published data for this and another linear polymer in a variety of “good” solvents, all show good agreement with the scaling predictions of the model.
Resumo:
Three regimes of fast DoD jetting behaviour for solutions of mono-disperse linear polymers have been linked to the underlying polymer molecular chains and their fully extended length L in good solvents. This allows scaling laws in molecular weight to be predicted and applied to experimental jetting results from different DoD print heads. The higher extensional flows encountered in high speed jetting in viscous solvents can fully stretch linear molecules outside the nozzle, permitting jetting of higher polymer content than for purely elastic behaviour. These results are significant for DoD printing at raised jet speeds and will apply to any DoD print head jetting linear polymer solutions.
Resumo:
In this paper, we consider Bayesian interpolation and parameter estimation in a dynamic sinusoidal model. This model is more flexible than the static sinusoidal model since it enables the amplitudes and phases of the sinusoids to be time-varying. For the dynamic sinusoidal model, we derive a Bayesian inference scheme for the missing observations, hidden states and model parameters of the dynamic model. The inference scheme is based on a Markov chain Monte Carlo method known as Gibbs sampler. We illustrate the performance of the inference scheme to the application of packet-loss concealment of lost audio and speech packets. © EURASIP, 2010.