1000 resultados para PROTEROZOIC OCEAN CHEMISTRY
Resumo:
The objective of this study was to test whether elevated pCO2 predicted for the year 2100 (85.1 Pa) affects bleaching in the coral Seriatopora caliendrum (Ehrenberg 1834) either independently or interactively with high temperature (30.5 °C). Response variables detected the sequence of events associated with the onset of bleaching: reduction in the photosynthetic performance of symbionts as measured by maximum photochemical efficiency (F v/F m) and effective photochemical efficiency (delta F/F m') of PSII, declines in net photosynthesis (P net) and photosynthetic efficiency (alpha), and finally, reduced chlorophyll a and symbiont concentrations. S. caliendrum was collected from Nanwan Bay, Taiwan, and subjected to combinations of temperature (27.7 vs. 30.5 °C) and pCO2 (45.1 vs. 85.1 Pa) for 14 days. High temperature reduced values of all dependent variables (i.e., bleaching occurred), but high pCO2 did not affect Symbiodinium photophysiology or productivity, and did not cause bleaching. These results suggest that short-term exposure to 81.5 Pa pCO2, alone and in combination with elevated temperature, does not cause or affect coral bleaching.
Resumo:
The effect of pH ranging from 8.0 to 6.8 (total scale - pHT) on fertilization, cleavage and larval development until pluteus stage was assessed in an intertidal temperate sea urchin. Gametes were obtained from adults collected in two contrasting tide pools, one showing a significant nocturnal pH decrease (lowest pHT = 7.4) and another where pH was more stable (lowest pHT = 7.8). The highest pHT at which significant effects on fertilization and cleavage were recorded was 7.6. On the contrary, larval development was only affected below pHT 7.4, a value equal or lower than that reported for several subtidal species. This suggests that sea urchins inhabiting stressful intertidal environments produce offspring that may better resist future ocean acidification. Moreover, at pHT 7.4, the fertilization rate of gametes whose progenitors came from the tide pool with higher pH decrease was significantly higher, indicating a possible acclimatization or adaptation of gametes to pH stress.
Resumo:
The average surface pH of the ocean is dropping at a rapid rate due to the dissolution of anthropogenic CO2, raising concerns for marine life. Additionally, some coastal areas periodically experience upwelling of CO2-enriched water with reduced pH. Previous research has demonstrated ocean acidification (OA)-induced changes in behavioural and sensory systems including olfaction, which is due to altered function of neural gamma-aminobutyric acid type A (GABAA) receptors. Here, we used a camera-based tracking software system to examine whether OA-dependent changes in GABAA receptors affect anxiety in juvenile Californian rockfish (Sebastes diploproa). Anxiety was estimated using behavioural tests that measure light/dark preference (scototaxis) and proximity to an object. After one week in OA conditions projected for the next century in the California shore (1125 ± 100 µatm, pH 7.75), anxiety was significantly increased relative to controls (483 ± 40 µatm CO2, pH 8.1). The GABAA-receptor agonist muscimol, but not the antagonist gabazine, caused a significant increase in anxiety consistent with altered Cl- flux in OA-exposed fish. OA-exposed fish remained more anxious even after 7 days back in control seawater; however, they resumed their normal behaviour by day 12. These results show that OA could severely alter rockfish behaviour; however, this effect is reversible.
Resumo:
Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business-as-usual carbon dioxide emission scenarios. Because the ocean absorbs carbon dioxide from the atmosphere, increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states. As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates, with potentially severe implications for marine ecosystems, including coral reefs. Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallowwater habitats. Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.