921 resultados para POWDER


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to deliver the drug to the patient in a safe, efficacious and cost-effective manner depends largely on the physicochemical properties of the active pharmaceutical ingredient (API) in the solid state. In this context, crystallization is of critical importance in pharmaceutical industry, as it defines physical and powder properties of crystalline APIs. An improved knowledge of the various aspects of crystallization process is therefore needed. The overall goal of this thesis was to gain better understanding of the relationships between crystallization, solid-state form and properties of pharmaceutical solids with a focus on a crystal engineering approach to design technological properties of APIs. Specifically, solid-state properties of the crystalline forms of the model APIs, erythromycin A and baclofen, and the influence of solvent on their crystallization behavior were investigated. In addition, the physical phenomena associated with wet granulation and hot-melting processing of the model APIs were examined at the molecular level. Finally, the effect of crystal habit modification of a model API on its tabletting properties was evaluated. The thesis enabled the understanding of the relationship between the crystalline forms of the model APIs, which is of practical importance for solid-state control during processing and storage. Moreover, a new crystalline form, baclofen monohydrate, was discovered and characterized. Upon polymorph screening, erythromycin A demonstrated high solvate-forming propensity thus emphasizing the need for careful control of the solvent effects during formulation. The solvent compositions that yield the desirable crystalline form of erythromycin A were defined. Furthermore, new examples on solvent-mediated phase transformations taking place during wet granulation of baclofen and hot-melt processing of erythromycin A dihydrate with PEG 6000 are reported. Since solvent-mediated phase transformations involve the crystallization of a stable phase and hence affect the dissolution kinetics and possibly absorption of the API these transformations must be well documented. Finally, a controlled-crystallization method utilizing HPMC as a crystal habit modifier was developed for erythromycin A dihydrate. The crystals with modified habit were shown to posses improved compaction properties as compared with those of unmodified crystals. This result supports the idea of morphological crystal engineering as a tool for designing technological properties of APIs and is of utmost practical interest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effective processing of powdered particles can facilitate powder handling and result in better drug product performance, which is of great importance in the pharmaceutical industry where the majority of active pharmaceutical ingredients (APIs) are delivered as solid dosage forms. The purpose of this work was to develop a new ultrasound-assisted method for particle surface modification and thin-coating of pharmaceutical powders. The ultrasound was used to produce an aqueous mist with or without a coating agent. By using the proposed technique, it was possible to decrease the interparticular interactions and improve rheological properties of poorly-flowing water-soluble powders by aqueous smoothing of the rough surfaces of irregular particles. In turn, hydrophilic polymer thin-coating of a hydrophobic substance diminished the triboelectrostatic charge transfer and improved the flowability of highly cohesive powder. To determine the coating efficiency of the technique, the bioactive molecule β-galactosidase was layered onto the surface of powdered lactose particles. Enzyme-treated materials were analysed by assaying the quantity of the reaction product generated during enzymatic cleavage of the milk sugar. A near-linear increase in the thickness of the drug layer was obtained during progressive treatment. Using the enzyme coating procedure, it was confirmed that the ultrasound-assisted technique is suitable for processing labile protein materials. In addition, this pre-treatment of milk sugar could be used to improve utilization of lactose-containing formulations for populations suffering from severe lactose intolerance. Furthermore, the applicability of the thin-coating technique for improving homogeneity of low-dose solid dosage forms was shown. The carrier particles coated with API gave rise to uniform distribution of the drug within the powder. The mixture remained homogeneous during further tabletting, whereas the reference physical powder mixture was subject to segregation. In conclusion, ultrasound-assisted surface engineering of pharmaceutical powders can be effective technology for improving formulation and performance of solid dosage forms such as dry powder inhalers (DPI) and direct compression products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluid bed granulation is a key pharmaceutical process which improves many of the powder properties for tablet compression. Dry mixing, wetting and drying phases are included in the fluid bed granulation process. Granules of high quality can be obtained by understanding and controlling the critical process parameters by timely measurements. Physical process measurements and particle size data of a fluid bed granulator that are analysed in an integrated manner are included in process analytical technologies (PAT). Recent regulatory guidelines strongly encourage the pharmaceutical industry to apply scientific and risk management approaches to the development of a product and its manufacturing process. The aim of this study was to utilise PAT tools to increase the process understanding of fluid bed granulation and drying. Inlet air humidity levels and granulation liquid feed affect powder moisture during fluid bed granulation. Moisture influences on many process, granule and tablet qualities. The approach in this thesis was to identify sources of variation that are mainly related to moisture. The aim was to determine correlations and relationships, and utilise the PAT and design space concepts for the fluid bed granulation and drying. Monitoring the material behaviour in a fluidised bed has traditionally relied on the observational ability and experience of an operator. There has been a lack of good criteria for characterising material behaviour during spraying and drying phases, even though the entire performance of a process and end product quality are dependent on it. The granules were produced in an instrumented bench-scale Glatt WSG5 fluid bed granulator. The effect of inlet air humidity and granulation liquid feed on the temperature measurements at different locations of a fluid bed granulator system were determined. This revealed dynamic changes in the measurements and enabled finding the most optimal sites for process control. The moisture originating from the granulation liquid and inlet air affected the temperature of the mass and pressure difference over granules. Moreover, the effects of inlet air humidity and granulation liquid feed rate on granule size were evaluated and compensatory techniques used to optimize particle size. Various end-point indication techniques of drying were compared. The ∆T method, which is based on thermodynamic principles, eliminated the effects of humidity variations and resulted in the most precise estimation of the drying end-point. The influence of fluidisation behaviour on drying end-point detection was determined. The feasibility of the ∆T method and thus the similarities of end-point moisture contents were found to be dependent on the variation in fluidisation between manufacturing batches. A novel parameter that describes behaviour of material in a fluid bed was developed. Flow rate of the process air and turbine fan speed were used to calculate this parameter and it was compared to the fluidisation behaviour and the particle size results. The design space process trajectories for smooth fluidisation based on the fluidisation parameters were determined. With this design space it is possible to avoid excessive fluidisation and improper fluidisation and bed collapse. Furthermore, various process phenomena and failure modes were observed with the in-line particle size analyser. Both rapid increase and a decrease in granule size could be monitored in a timely manner. The fluidisation parameter and the pressure difference over filters were also discovered to express particle size when the granules had been formed. The various physical parameters evaluated in this thesis give valuable information of fluid bed process performance and increase the process understanding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrazinium(1 +) hydrogensulphate, N2H5HSO4, has been prepared for the first time by the reaction of solid ammonium hydrogensulphate with hydrazine monohydrate. The compound has been characterized by chemical analysis, infrared spectra, and X-ray powder diffraction. Thermal properties of N2H5HSO4 have been investigated using differential thermal analysis and thermogravimetric analysis and compared with those of N2H6SO4 and (N2H5)2SO4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to improve and continuously develop the quality of pharmaceutical products, the process analytical technology (PAT) framework has been adopted by the US Food and Drug Administration. One of the aims of PAT is to identify critical process parameters and their effect on the quality of the final product. Real time analysis of the process data enables better control of the processes to obtain a high quality product. The main purpose of this work was to monitor crucial pharmaceutical unit operations (from blending to coating) and to examine the effect of processing on solid-state transformations and physical properties. The tools used were near-infrared (NIR) and Raman spectroscopy combined with multivariate data analysis, as well as X-ray powder diffraction (XRPD) and terahertz pulsed imaging (TPI). To detect process-induced transformations in active pharmaceutical ingredients (APIs), samples were taken after blending, granulation, extrusion, spheronisation, and drying. These samples were monitored by XRPD, Raman, and NIR spectroscopy showing hydrate formation in the case of theophylline and nitrofurantoin. For erythromycin dihydrate formation of the isomorphic dehydrate was critical. Thus, the main focus was on the drying process. NIR spectroscopy was applied in-line during a fluid-bed drying process. Multivariate data analysis (principal component analysis) enabled detection of the dehydrate formation at temperatures above 45°C. Furthermore, a small-scale rotating plate device was tested to provide an insight into film coating. The process was monitored using NIR spectroscopy. A calibration model, using partial least squares regression, was set up and applied to data obtained by in-line NIR measurements of a coating drum process. The predicted coating thickness agreed with the measured coating thickness. For investigating the quality of film coatings TPI was used to create a 3-D image of a coated tablet. With this technique it was possible to determine coating layer thickness, distribution, reproducibility, and uniformity. In addition, it was possible to localise defects of either the coating or the tablet. It can be concluded from this work that the applied techniques increased the understanding of physico-chemical properties of drugs and drug products during and after processing. They additionally provided useful information to improve and verify the quality of pharmaceutical dosage forms

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spin-state equilibria in the whole set of LCoO3 (where L stands for a rare-earth metal or Y) have been investigated with the use of 59Co NMR as a probe for the polycrystalline samples (except Ce) in the temperature interval 110-550 K and frequency range 3- 11.6 MHz. Besides confirming the coexistence of the high-spin—low-spin state in this temperature range, a quadrupolar interaction of ∼0.1 -0.5 MHz has been detected for the first time from 59Co NMR. The NMR line shape is found to depend strongly on the relative magnitude of the magnetic and quadrupolar interactions present. Analysis of the powder pattern reveals two basically different types of transferred hyperfine interaction between the lighter and heavier members of the rare-earth series. The first three members of the lighter rare-earth metals La, Pr (rhombohedral), and Nd (tetragonal), exhibit second-order quadrupolar interaction with a zero-asymmetry parameter at lower temperatures. Above a critical temperature TS (dependent on the size of the rare-earth ion), the quadrupolar interaction becomes temperature dependent and eventually gives rise to a first-order interaction thus indicating a possible second-order phase change. Sm and Eu (orthorhombic) exhibit also a second-order quadrupolar interaction with a nonzero asymmetry parameter ((η∼0.47)) at 300 K, while the orthorhombic second-half members (Dy,..., Lu and Y) exhibit first-order quadrupolar interaction at all temperatures. Normal paramagnetic behavior, i.e., a linear variation of Kiso with T-1, has been observed in the heavier rare-earth cobaltites (Er,..., Lu and Y), whereas an anomalous variation has been observed in (La,..., Nd)CoO3. Thus, Kiso increases with increasing temperature in PrCoO3 and NdCoO3. These observations corroborate the model of the spin-state equilibria in LCoO3 originally proposed by Raccah and Goodenough. A high-spin—low-spin ratio, r=1, can be stabilized in the perovskite structure by a cooperative displacement of the oxygen atoms from the high-spin towards the low-spin cation. Where this ordering into high- and low-spin sublattices occurs at r=1, one can anticipate equivalent displacement of all near-neighbor oxygen atoms towards a low-spin cobalt ion. Thus the heavier LCoO3 exhibits a small temperature-independent first-order quadrupolar interaction. Where r<1, the high- and low-spin states are disordered, giving rise to a temperature-dependent second-order quadrupolar interaction with an anomalous Kiso for the lighter LCoO3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigations on the phase relations and dielectric properties of (1 -x)BaTiO3 + xNd2/3TiO 3 (BNT) ceramics sintered in air below 1650 K have been carried out. X-ray powder diffraction studies indicate apparent phase singularity for compositions with x < 0.3. Nd2Ti207 is detected at higher neodymium concentrations. The unit cell parameter changes continuously with neodymium content, and BaTiO3 is completely cubic at room temperature with x -- 0.0525, whereas electron diffraction studies indicate that the air-sintered BNT ceramics with x > 0.08 contain additional phases that are partly amorphous even to an electron beam. SEM observations reveal that BaTiO3 grains are mostly covered by a molten intergranular phase, and show the presence of randomly distributed Nd2Ti207 grains. Energy dispersive X-ray analysis shows the Ba-Nd-Ti ternary composition of the intergranular phase. Differential thermal analysis studies support the formation of a partial melt involving dissolution-precipitation of boundary layers of BaTiO3 grains. These complex phase relations are accounted for in terms of the phase instability of BaTiO3 with large cation-vacancy concentration as a result of heavy Nd 3+ substitution. The absence of structural intergrowth in (1 - x)BaTiO3 + xNd2/3TiO3 under oxidative conditions leads to a separation of phases wherein the new phases undergo melting and remain X-ray amorphous. BNT ceramics with 0.1 < x < 0.3 have ~eff >~ 104 with tan 6 < 0.1 and nearly flat temperature capacitance characteristics. The grain-size dependence of ee,, variations of ~eff and tan 6 with the measuring frequency, the non-ohmic resistivities, and the non-linear leakage currents at higher field-strengths which are accompanied by the decrease in eeff and rise in tan 3, are explained on the basis of an intergranular (internal boundary layer) dielectric characteristic of these ceramics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Attempts to prepare BaSnO3 by the hydrothermal method starting from SnO2·xH2O gel and Ba (OH)2 solution in teflonlined autoclaves at 150–260°C invariably lead to the formation of a hydrated phase, BaSn(OH)6·3H2O. On heating in air or on releasing the pressure Image at ≈260°C, BaSN (OH)6·3H2O converts to BaSnO3 fine powder which involves the formation of an intermediate oxyhydroxide, BaSnO(OH)4. TEM studies show that particle size of the resulting BaSnO3 ranges from 0.2–0.6 μm. Solid solutions of Ba(Ti, Sn) O3 were prepared from (TiO2+SnO2)·xH2O mixed gel and Ba(OH)2 solutions. Single-phase perovskite Ba(Ti, Sn)O3 was obtained up to 35 atom % Sn. Above this composition, the hydrothermal products are mixtures of BaTiO3 (cubic) and BaSn(OH)6·3H2O which on heating at ≈260°C give rise to BaTiO3+BaSnO3. Annealing at 1000°C results in monophasic Ba(Ti, Sn)O3, in the complete range of Sn/Ti. Formation of the hydrated phase is attributed to the amphoteric nature of SnO2·xH2O gel which stabilises Sn(OH)62− anions under higher H2O-pressures and elevated temperatures. The sintering characteristics and dielectric properties of ceramics prepared from these fine powders are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sr1−xPrxTiO3 has recently been shown to exhibit ferroelectricity at room temperature. In this paper powder x-ray and neutron-diffraction patterns of this system at room temperature have been analyzed to show that the system exhibits cubic (Pm-3m) structure for x<=0.05 and tetragonal (I4/mcm) for x>0.05. The redundancy of the noncentrosymmetric structural model (I4cm) in the ferroelectric state suggests the absence of long-range ordered ferroelectric domains and supports the relaxor ferroelectric model for this system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transparent SrLiB9O15 (SLBO) glasses were fabricated via the conventional melt-quenching technique. X-ray powder diffraction and differential thermal analysis carried out on the as-quenched samples confirmed their amorphous and glassy nature, respectively. The dielectric constants in the 100 Hz to 10 MHz frequency range for SLBO glasses were measured as a function of temperature (300–1023 K). The dielectric relaxation characteristics were rationalized using the electric modulus formalism. The electrode polarization effect was subtracted from the low-frequency dielectric constant to have an insight into the intrinsic dielectric behavior of SLBO glasses. The imaginary part of electric modulus spectra was modeled using an approximate solution of Kohlrausch–Williams–Watts relation. The dielectric constant for the as-quenched glass increased with increasing temperature and exhibited anomalies in the vicinity of the glass transition and crystallization temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoclusters of 25 nm sized Mg-THF have been prepared by the solvated metal atom dispersion method. Room-temperature digestive ripening of these nanoclusters in the presence of hexadecylamine (HDA) resulted in highly monodisperse colloidal Mg-HDA nanoparticles of 2.8 ± 0.2 nm. An insight into the room-temperature digestive ripening process was obtained by studying the disintegration of clusters for various Mg:HDA ratios. The Mg colloids are quite stable with respect to precipitation of particles under Ar atmosphere. Using this procedure, pure Mg(0) nanopowders were obtained in gram scale quantities. The Mg powder precipitated from the colloid was fully hydrided at 33 bar and 118 °C. Initial desorption of H2 from samples of MgH2 was achieved at a remarkably low temperature, 115 °C compared to >350 °C in bulk Mg, demonstrating the importance of the size on the desorption temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

E.S.R. investigations of γ-irradiated ferroelectric Sodium ammonium selenate, NaNH4SeO4•2H2O and its deuteriated analogue in powder and single crystal forms have led to a deeper understanding of the nature of the ferroelectric transition of 180 K. A number of paramagnetic species formed due to γ-irradiation have been identified on the basis of their g-factors and hyperfine features from 77Se. The radical SeO4 has been used as a microprobe in studying the phase transition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single crystal [(111) and (100) planes], and powder ESR of Mn2+ (substituting for Ca2+) in Ca2Ba(C2H5COO)6 in the temperature range 220°C to -160°C shows (i) a doubling of both the physically and chemically inequivalent sites, and a change in the magnitude (150 G at -6°C to 170 G at -8°C) as well as the orientation of the D tensor across the -6°C transition and (ii) an inflection point in the D vs T plot across the -75°C transition. The oxygen octahedra around the Ca2+ sites are inferred to undergo alternate rotations, showing the participation of the carboxyl oxygens in the -6°C transition. A relation of the type D=D0(1+αT+βT2) seems to fit the D variation satisfactorily.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyaniline (PANI)/para-toluene sulfonic acid (pTSA) and PANI/pTSA-TiO2 composites were prepared using chemical method and characterized by infrared spectroscopy (IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM). The electrical conductivity and magnetic properties were also measured. In corroboration with XRD, the micrographs of SEM indicated the homogeneous dispersion of TiO nanoparticles in bulk PANI/pTSA matrix. Conductivity of the PANI/pTSA-TiO2 was higher than the PAN[/pTSA, and the maximum conductivity obtained was 9.48 (S/cm) at 5 wt% of TiO2. Using SQUID magnetometer, it was found that PANI/pTSA was either paramagnetic or weakly ferromagnetic from 300 K down to 5 K with H-C approximate to 30 Oe and M-r approximate to 0.015 emu/g. On the other hand,PANI/pTSA-TiO2 was diamagnetic from 300 K down to about 50 K and below which it was weakly ferromagnetic. Furthermore, a nearly temperature-independent magnetization was observed in both the cases down to 50 K and below which the magnetization increased rapidly (a Curie like susceptibility was observed). The Pauli susceptibility (chi(pauli)) was calculated to be about 4.8 X 10(-5) and 1.6 x 10(-5)emug(-1) Oe(-1) K for PANI/pTSA and PANI/pTSA-TiO2, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transparent BaNaB9O15 (BNBO) glasses were fabricated via the conventional melt-quenching technique. X-ray powder diffraction (XRD) followed by differential scanning calorimetric (DSC) studies confirmed the amorphous and glassy nature of the as-quenched samples, respectively. The effect of seeding on the crystallization of BNBO glasses was studied by non-isothermal DSC method and was modeled using the Johnson-Mehl-Avrami and Ozawa equations. The activation energy for seeded glasses decreased with the increase in fraction of crystallization. The values for the onset of crystallization and Avrami exponent were found to be lower for seeded samples which were associated with the heterogeneous nucleation and epitaxial processes.