879 resultados para POSITIONED FLAP
Resumo:
The paper examines how European retailers are using private standards for food safety and,quality as risk management and competitive tools and the strategic responses of leading Kenyan and other developing country supplier/exporters to such standards. Despite measures to harmonize a 'single market', the European fresh produce market is very diverse in terms of consumer preferences, structural dynamics and attention to and enforcement of food safety and other standards. Leading Kenyan fresh produce suppliers have re-positioned themselves at the high end, including 'high care', segments of the market - precisely those that are most demanding in terms of quality assurance and food safety systems. An array of factors have influenced this strategic positioning, including relatively high international freight costs, the emergence of more effective competition in mainstream product lines, relatively low labor costs for produce preparation, and strong market relationships with selected retail chains. To succeed in this demanding market segment, the industry has had to invest substantially in improved production and procurement systems, upgraded pack house facilities, and quality assurance/food safety management systems. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A primary objective of agri-environment schemes is the conservation of biodiversity; in addition to increasing the value of farmland for wildlife, these schemes also aim to restore natural ecosystem functioning. The management of scheme options can influence their value for delivering ecosystem services by modifying the composition of floral and faunal communities. This study examines the impact of an agri-environment scheme prescription on ecosystem functioning by testing the hypothesis that vegetation management influences decomposition rates in grassy arable field margins. The effects of two vegetation management practices in arable field margins - cutting and soil disturbance (scarification) - on litter decomposition were compared using a litterbag experimental approach in early April 2006. Bags had either small mesh designed to restrict access to soil macrofauna, or large mesh that would allow macrofauna to enter. Bags were positioned on the soil surface or inserted into the soil in cut and scarified margins, retrieved after 44, 103 and 250 days and the amount of litter mass remaining was calculated. Litter loss from the litterbags with large mesh was greater than from the small mesh bags, providing evidence that soil macrofauna accelerate rates of litter decomposition. In the large mesh bags, the proportion of litter remaining in bags above and belowground in the cut plots was similar, while in the scarified plots, there was significantly more litter left in the aboveground bags than in the belowground bags. This loss of balance between decomposition rates above and belowground in scarified margins may have implications for the development and maintenance of grassy arable field margins by influencing nutrient availability for plant communities. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Repair of both normal and reduced AP sites is activated by AP endonuclease, which recognizes and cleaves a phosphodiester bond 5' to the AP site. For a short period of time an incised AP site is occupied by poly(ADP-ribose) polymerase and then DNA polymerase beta adds one nucleotide into the repair gap and simultaneously removes the 5'-sugar phosphate. Finally, the DNA ligase III/XRCC1 complex accomplishes repair by sealing disrupted DNA ends. However, long-patch BER pathway, which is involved in the removal of reduced abasic sites, requires further DNA synthesis resulting in strand displacement and the generation of a damage-containing flap that is later removed by the flap endonuclease. Strand-displacement DNA synthesis is accomplished by DNA polymerase delta/epsilon and DNA ligase I restores DNA integrity. DNA synthesis by DNA polymerase delta/epsilon is dependent on proliferating cell nuclear antigen, which also stimulates the DNA ligase I and flap endonuclease. These repair events are supported by multiple protein-protein interactions. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A series of water-soluble synthetic dipeptides (1-3) with an N-terminally located beta-alanine residue, beta-alanyl-L-valine (1), beta-alanyl-L-isoleucine (2), and beta-alanyl-L-phenylalanine (3, form hydrogen-bonded supramolecular double helices with a pitch length of 1 nm, whereas the C-terminally positioned beta-alanine containing dipeptide (4), L-phenylalanyl-beta-alanine, does not form a supramolecular double helical structure. beta-Ala-Xaa (Xaa = Val/Ile/Phe) can be regarded as a new motif for the formation of supramolecular double helical structures in the solid state.
Resumo:
Two dipeptides containing an N-terminally positioned omega-amino acid residue (beta-alanine/delta-amino valeric acid) self-assembles to form nanotubes in the solid state as well as in aqueous solution. In spite of having hollow nanotubular structures in the solid state and in solution, their self-assembling nature in these two states are different and this leads to the formation of different internal diameters of these nanotubes in solution and in solid state structure. These nanotubes are stable proteolytically, thermally, and over a wide range of pH values (1-13). The role of water molecules in nanotube formation has been investigated in the solid state. These nanotubes can be considered as a new class of dipeptide nanotubes as they are consisting of N-terminally located protease resistant omega-amino acid residues and C-terminally positioned alpha-amino acid residues. These dipeptides can form an interesting class of short peptidic structure that can give rise to stable nanotubular structure upon self-assembly and these nanotubes can be explored in future for potential nanotechnological applications.
Resumo:
A critical analysis of single crystal X-ray diffraction studies on a series of terminally protected tripeptides containing a centrally positioned Aib (alpha-aminoisobutyric acid) residue has been reported. For the tripeptide series containing Boc-Ala-Aib as corner residues, all the reported peptides formed distorted type II beta-turn structures. Moreover, a series of Phe substituted analogues ( tripeptides with Boc-Phe-Aib) have also shown different beta-turn conformations. However, the Leu-modified analogues (tripeptides with Boc-Leu-Aib) disrupt the concept of beta-turn formation and adopt various conformations in the solid state. X-ray crystallography sheds some light on the conformational heterogeneity at atomic resolution. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Three terminally protected tripeptides Boc-gamma-Abu-Val-Leu-OMe 1, Boc-gamma-Abu-Leu-Phe-OMe 2 and Boc-gamma-Abu-Val-Tyr-OMe 3 (gamma-Abu = gamma-aminobutyric acid) each containing an N-terminally positioned gamma-aminobutyric acid residue have been synthesized, purified and studied. FT-IR studies of all these peptides revealed that these peptides form intermolecularly hydrogen bonded supramolecular beta-sheet structures. Peptides 1, 2 and 3 adopt extended backbone beta-strand molecular structures in crystals. Crystal packing of all these peptides demonstrates that these beta-strand structures self-assemble to form intermolecularly H-bonded parallel beta-sheet structures. Peptide 3 uses a side chain tyrosyl -OH group as an additional hydrogen bonding functionality in addition to the backbone CONH groups to pack in crystals. Transmission electron microscopic studies of all peptides indicate that they self-assemble to form nanofibrillar structures of an average diameter of 65 nm. These peptide fibrils exhibit amyloid-like behavior as they bind to a physiological dye Congo red and show a characteristic green-gold birefringence under polarizing microscope.
Resumo:
Experimental wind tunnel and smoke visualisation testing and CFD modelling were conducted to investigate the effect of air flow control mechanism and heat source inside rooms on wind catchers/towers performance. For this purpose, a full-scale wind catcher was connected to a test room and positioned centrally in an open boundary wind tunnel. Pressure coefficients (C-p's) around the wind catcher and air flow into the test room were established. The performance of the wind catcher depends greatly on the wind speed and direction. The incorporation of dampers and egg crate grille at ceiling level reduces and regulates the air flow rate with an average pressure loss coefficient of 0.01. The operation of the wind catcher in the presence of heat sources will potentially lower the internal temperatures in line with the external temperatures.
Resumo:
Wind catcher systems have been employed in buildings in the Middle East for many centuries and they are known by different names in different parts of the region. Recently there has been an increase in the application of this approach for natural ventilation and passive cooling in the UK and other countries. This paper presents the results of experimental wind tunnel and smoke visualisation testing, combined with CFD modelling, to investigate the performance of the wind catcher. For this purpose, a full-scale commercial system was connected to a test room and positioned centrally in an open boundary wind tunnel. Because much ventilation design involves the use of computational fluid dynamics, the measured performance of the system was also compared against the results of CFD analysis. Configurations included both a heated and unheated space to determine the impact of internal heat sources on airflow rate. Good comparisons between measurement and CFD analysis were obtained. Measurements showed that sufficient air change could be achieved to meet both air quality needs and passive cooling.
Resumo:
An alternative approach to research is described that has been developed through a succession of significant construction management research projects. The approach follows the principles of iterative grounded theory, whereby researchers iterate between alternative theoretical frameworks and emergent empirical data. Of particular importance is an orientation toward mixing methods, thereby overcoming the existing tendency to dichotomize quantitative and qualitative approaches. The approach is positioned against the existing contested literature on grounded theory, and the possibility of engaging with empirical data in a “theory free” manner is discounted. Emphasis instead is given to the way in which researchers must be theoretically sensitive as a result of being steeped in relevant literatures. Knowledge of existing literatures therefore shapes the initial research design; but emergent empirical findings cause fresh theoretical perspectives to be mobilized. The advocated approach is further aligned with notions of knowledge coproduction and the underlying principles of contextualist research. It is this unique combination of ideas which characterizes the paper's contribution to the research methodology literature within the field of construction management. Examples are provided and consideration is given to the extent to which the emergent findings are generalizable beyond the specific context from which they are derived.
Resumo:
Urea forms a 1:1 solvate with N,N-dimethylacetamide (DMA) [systematic name: diaminomethanal- N,N-dimethylacetamide (1/1), C4H9NO center dot CH4N2O] with both molecules positioned on a twofold axis, giving rise to rotational disorder of the DMA molecule. The molecules display a layered structure in which urea molecules form hydrogen-bonded ribbons bounded by molecules of solvent.
Resumo:
The International Conference (series) on Disability, Virtual Reality and Associated Technologies (ICDVRAT) this year held its sixth biennial conference, celebrating ten years of research and development in this field. A total of 220 papers have been presented at the first six conferences, addressing potential, development, exploration and examination of how these technologies can be applied in disabilities research and practice. The research community is broad and multi-disciplined, comprising a variety of scientific and medical researchers, rehabilitation therapists, educators and practitioners. Likewise, technologies, their applications and target user populations are also broad, ranging from sensors positioned on real world objects to fully immersive interactive simulated environments. A common factor is the desire to identify what the technologies have to offer and how they can provide added value to existing methods of assessment, rehabilitation and support for individuals with disabilities. This paper presents a brief review of the first decade of research and development in the ICDVRAT community, defining technologies, applications and target user populations served.
Resumo:
A signalling procedure is described involving a connection, via the Internet, between the nervous system of an able-bodied individual and a robotic prosthesis, and between the nervous systems of two able-bodied human subjects. Neural implant technology is used to directly interface each nervous system with a computer. Neural motor unit and sensory receptor recordings are processed real-time and used as the communication basis. This is seen as a first step towards thought communication, in which the neural implants would be positioned in the central nervous systems of two individuals.
Resumo:
The lithium salt of the anionic SPS pincer ligand composed of a central hypervalent lambda(4)-phosphinine ring bearing two ortho-positioned diphenylphosphine sulfide side arms reacts with [Mn(CO)(5)Br] to give fac-[Mn(SPS)(CO)(3)], This isomer can be converted photochemicaily to mer-[Mn(SPS)(CO)(3)], with a very high quantum yield (0.80 +/- 0.05). The thermal backreaction is slow (taking ca. 8 h at room temperature), in contrast to rapid electrodecatalyzed mer-to-fac isomerization triggered by electrochemical reduction of mer-[Mn(SPS)(CO)(3)]. Both geometric isomers of [Mn(SPS)(CO)(3)] have been characterized by X-ray crystallography. Both isomers show luminescence from a low-lying (IL)-I-3 (SPS-based) excited state. The light emission of fac-[Mn(SPS)(CO)(3)] is largely quenched by the efficient photoisomerization occurring probably from a low-lying Mn-CO dissociative excited state. Density functional theory (DFT) and time-dependent DFT calculations describe the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of fac- and mer-[Mn(CO)(3)(SPS)] as ligand-centered orbitals, largely localized on the phosphinine ring of the SPS pincer ligand. In line with the ligand nature of its frontier orbitals, fac-[Mn(SPS)(CO)(3)] is electrochemically reversibly oxidized and reduced to the corresponding radical cation and anion, respectively. The spectroscopic (electron paramagnetic resonance, IR, and UV-vis) characterization of the radical species provides other evidence for the localization of the redox steps on the SIPS ligand. The smaller HOMO-LUMO energy difference in the case of mer-[Mn(CO)(3)(SPS)], reflected in the electronic absorption and emission spectra, corresponds with its lower oxidation potential compared to that of the fac isomer. The thermodynamic instability of mer-[Mn(CO)(3)(SPS)], confirmed by the DFT calculations, increases upon one-electron reduction and oxidation of the complex.
Resumo:
The HIRDLS instrument contains 21 spectral channels spanning a wavelength range from 6 to 18mm. For each of these channels the spectral bandwidth and position are isolated by an interference bandpass filter at 301K placed at an intermediate focal plane of the instrument. A second filter cooled to 65K positioned at the same wavelength but designed with a wider bandwidth is placed directly in front of each cooled detector element to reduce stray radiation from internally reflected in-band signals, and to improve the out-of-band blocking. This paper describes the process of determining the spectral requirements for the two bandpass filters and the antireflection coatings used on the lenses and dewar window of the instrument. This process uses a system throughput performance approach taking the instrument spectral specification as a target. It takes into account the spectral characteristics of the transmissive optical materials, the relative spectral response of the detectors, thermal emission from the instrument, and the predicted atmospheric signal to determine the radiance profile for each channel. Using this design approach an optimal design for the filters can be achieved, minimising the number of layers to improve the in-band transmission and to aid manufacture. The use of this design method also permits the instrument spectral performance to be verified using the measured response from manufactured components. The spectral calculations for an example channel are discussed, together with the spreadsheet calculation method. All the contributions made by the spectrally active components to the resulting instrument channel throughput are identified and presented.