977 resultados para PHYSICS, CONDENSED MATTER


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The freezing behavior of water confined in compacted charged and uncharged clays (montmorillonite in Na-and Ca-forms, illite in Na-and Ca-forms, kaolinite and pyrophyllite) was investigated by neutron scattering. Firstly, the amount of frozen (immobile) water was measured as a function of temperature at the IN16 backscattering spectrometer, Institute Laue-Langevin (ILL). Water in uncharged, partly hydrophobic (kaolinite) and fully hydrophobic (pyrophyllite) clays exhibited a similar freezing and melting behavior to that of bulk water. In contrast, water in charged clays which are hydrophilic could be significantly supercooled. To observe the water dynamics in these clays, further experiments were performed using quasielastic neutron scattering. At temperatures of 250, 260 and 270 K the diffusive motion of water could still be observed, but with a strong reduction in the water mobility as compared with the values obtained above 273 K. The diffusion coefficients followed a non-Arrhenius temperature dependence well described by the Vogel-Fulcher-Tammann and the fractional power relations. The fits revealed that Na-and Ca-montmorillonite and Ca-illite have similar Vogel-Fulcher-Tammann temperatures (T-VFT, often referred to as the glass transition temperature) of similar to 120 K and similar temperatures at which the water undergoes the 'strong-fragile' transition, T-s similar to 210 K. On the other hand, Na-illite had significantly larger values of T-VFT similar to 180 K and T-s similar to 240 K. Surprisingly, Ca-illite has a similar freezing behavior of water to that of montmorillonites, even though it has a rather different structure. We attribute this to the stronger hydration of Ca ions as compared with the Na ions occurring in the illite clays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use density functional theory to explore the interplay between octahedral rotations and ferroelectricity in the model compound SrTiO3. We find that over the experimentally relevant range octahedral rotations suppress ferroelectricity as is generally assumed in the literature. Somewhat surprisingly, we observe that at larger angles the previously weakened ferroelectric instability strengthens significantly. By analyzing geometry changes, energetics, force constants and charges, we explain the mechanisms behind this transition from competition to cooperation with increasing octahedral rotation angle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systematic data on the effect of irradiation with swift ions (Zn at 735 MeV and Xe at 929 MeV) on NaCl single crystals have been analysed in terms of a synergetic two-spike approach (thermal and excitation spikes). The coupling of the two spikes, simultaneously generated by the irradiation, contributes to the operation of a non-radiative exciton decay model as proposed for purely ionization damage. Using this scheme, we have accounted for the π-emission yield of self-trapped excitons and its temperature dependence under ion-beam irradiation. Moreover, the initial production rates of F-centre growth have also been reasonably simulated for irradiation at low temperatures ( < 100 K), where colour centre annealing and aggregation can be neglected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Screw dislocations in bcc metals display non-planar cores at zero temperature which result in high lattice friction and thermally-activated strain rate behavior. In bcc W, electronic structure molecular statics calculations reveal a compact, non-degenerate core with an associated Peierls stress between 1.7 and 2.8 GPa. However, a full picture of the dynamic behavior of dislocations can only be gained by using more efficient atomistic simulations based on semiempirical interatomic potentials. In this paper we assess the suitability of five different potentials in terms of static properties relevant to screw dislocations in pure W. Moreover, we perform molecular dynamics simulations of stress-assisted glide using all five potentials to study the dynamic behavior of screw dislocations under shear stress. Dislocations are seen to display thermally-activated motion in most of the applied stress range, with a gradual transition to a viscous damping regime at high stresses. We find that one potential predicts a core transformation from compact to dissociated at finite temperature that affects the energetics of kink-pair production and impacts the mechanism of motion. We conclude that a modified embedded-atom potential achieves the best compromise in terms of static and dynamic screw dislocation properties, although at an expense of about ten-fold compared to central potentials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intermediate-band materials can improve the photovoltaic efficiency of solar cells through the absorption of two subband-gap photons that allow extra electron-hole pair formations. Previous theoretical and experimental findings support the proposal that the layered SnS2 compound, with a band-gap of around 2 eV, is a candidate for an intermediate-band material when it is doped with a specific transition-metal. In this work we characterize vanadium doped SnS2 using density functional theory at the dilution level experimentally found and including a dispersion correction combined with the site-occupancy-disorder method. In order to analyze the electronic characteristics that depend on geometry, two SnS2 polytypes partially substituted with vanadium in symmetry-adapted non-equivalent configurations were studied. In addition the magnetic configurations of vanadium in a SnS2 2H-polytype and its comparison with a 4H-polytype were also characterized. We demonstrate that a narrow intermediate-band is formed, when these dopant atoms are located in different layers. Our theoretical predictions confirm the recent experimental findings in which a paramagnetic intermediate-band material in a SnS2 2H-polytype with 10% vanadium concentration is obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural state and static and dynamic magnetic properties of TbCu2 nanoparticles are reported produced by mechanical milling under inert atmosphere. The core magnetic structure retains the bulk antiferromagnetic arrangement. The overall interpretation is based on a superantiferromagnetic behavior which at low temperatures coexists with a canting of surface moments and mismatch of antiferromagnetic sublattices of the nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model Hamiltonians have been, and still are, a valuable tool for investigating the electronic structure of systems for which mean field theories work poorly. This review will concentrate on the application of Pariser–Parr–Pople (PPP) and Hubbard Hamiltonians to investigate some relevant properties of polycyclic aromatic hydrocarbons (PAH) and graphene. When presenting these two Hamiltonians we will resort to second quantisation which, although not the way chosen in its original proposal of the former, is much clearer. We will not attempt to be comprehensive, but rather our objective will be to try to provide the reader with information on what kinds of problems they will encounter and what tools they will need to solve them. One of the key issues concerning model Hamiltonians that will be treated in detail is the choice of model parameters. Although model Hamiltonians reduce the complexity of the original Hamiltonian, they cannot be solved in most cases exactly. So, we shall first consider the Hartree–Fock approximation, still the only tool for handling large systems, besides density functional theory (DFT) approaches. We proceed by discussing to what extent one may exactly solve model Hamiltonians and the Lanczos approach. We shall describe the configuration interaction (CI) method, a common technology in quantum chemistry but one rarely used to solve model Hamiltonians. In particular, we propose a variant of the Lanczos method, inspired by CI, that has the novelty of using as the seed of the Lanczos process a mean field (Hartree–Fock) determinant (the method will be named LCI). Two questions of interest related to model Hamiltonians will be discussed: (i) when including long-range interactions, how crucial is including in the Hamiltonian the electronic charge that compensates ion charges? (ii) Is it possible to reduce a Hamiltonian incorporating Coulomb interactions (PPP) to an 'effective' Hamiltonian including only on-site interactions (Hubbard)? The performance of CI will be checked on small molecules. The electronic structure of azulene and fused azulene will be used to illustrate several aspects of the method. As regards graphene, several questions will be considered: (i) paramagnetic versus antiferromagnetic solutions, (ii) forbidden gap versus dot size, (iii) graphene nano-ribbons, and (iv) optical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that an Anderson Hamiltonian describing a quantum dot connected to multiple leads is integrable. A general expression for the nonlinear conductance is obtained by combining the Bethe ansatz exact solution with Landauer-Buttiker theory. In the Kondo regime, a closed form expression is given for the matrix conductance at zero temperature and when all the leads are close to the symmetric point. A bias-induced splitting of the Kondo resonance is possible for three or more leads. Specifically, for N leads, with each at a different chemical potential, there can be N-1 Kondo peaks in the conductance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For many strongly correlated metals with layered crystal structure the temperature dependence of the interlayer resistance is different to that of the intralayer resistance. We consider a small polaron model which exhibits this behavior, illustrating how the interlayer transport is related to the coherence of quasiparticles within the layers. Explicit results are also given for the electron spectral function, interlayer optical conductivity, and the interlayer magnetoresistance. All these quantities have two contributions: one coherent (dominant at low temperatures) and the other incoherent (dominant at high temperatures).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a model for non-ideal monitoring of the state of a coupled quantum dot qubit by a quantum tunnelling device. The non-ideality is modelled using an equivalent measurement circuit. This allows realistically available measurement results to be related to the state of the quantum system (qubit). We present a quantum trajectory that describes the stochastic evolution of the qubit state conditioned by tunnelling events (i.e. current) through the device. We calculate and compare the noise power spectra of the current in an ideal and a non-ideal measurement. The results show that when the two qubit dots are strongly coupled the non-ideal measurement cannot detect the qubit state precisely. The limitation of the ideal model for describing a realistic system maybe estimated from the noise spectra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the ballistic transport picture, we have investigated the spin-polarized transport properties of a ferromagnetic metal/two-dimensional semiconductor (FM/SM) hybrid junction and an FM/FM/SM structure using quantum tunnelling theory. Our calculations indicate explicitly that the low spin injection efficiency (SIE) from an FM into an SM, compared with a ferromagnet/normal metal junction, originates from the mismatch of electron densities in the FM and SM. To enhance the SIE from an FM into an SM, we introduce another FM film between them to form FM/FM/SM double tunnel junctions, in which the quantum interference effect will lead to the current polarization exhibiting periodically oscillating behaviour, with a variation according to the thickness of the middle FM film and/or its exchange energy strength. Our results show that, for some suitable values of these parameters, the SIE can reach a very high level, which can also be affected by the electron density in the SM electrode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamical properties of an extended Hubbard model, which is relevant to quarter-filled layered organic molecular crystals, are analyzed. We have computed the dynamical charge correlation function, spectral density, and optical conductivity using Lanczos diagonalization and large-N techniques. As the ratio of the nearest-neighbor Coulomb repulsion, V, to the hopping integral, t, increases there is a transition from a metallic phase to a charge-ordered phase. Dynamical properties close to the ordering transition are found to differ from the ones expected in a conventional metal. Large-N calculations display an enhancement of spectral weight at low frequencies as the system is driven closer to the charge-ordering transition in agreement with Lanczos calculations. As V is increased the charge correlation function displays a collective mode which, for wave vectors close to (pi,pi), increases in amplitude and softens as the charge-ordering transition is approached. We propose that inelastic x-ray scattering be used to detect this mode. Large-N calculations predict superconductivity with d(xy) symmetry close to the ordering transition. We find that this is consistent with Lanczos diagonalization calculations, on lattices of 20 sites, which find that the binding energy of two holes becomes negative close to the charge-ordering transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The comparative analysis of the most widely used methods of mesoporosity characterization of two activated carbon fibers is presented. Not only the older methods are used, i.e. Barrett, Joyner and Halenda (BJH), Dubinin (the so-called first variant-D-1ST and the so-called second variant-D-2ND), Dollimore and Heal (DH), and Pierce (P) but the recently developed ones, i.e. the method of Nguyen and Do (ND) and that developed by Do (Do) are also applied. Additionally, the method of the characterization of fractality is put to use (fractal analog of FHH isotherm). The results are compared and discussed. (C) 2002 Elsevier Science B.V. All fights reserved.