966 resultados para PHOTOCHEMICAL DECOMPOSITION
Resumo:
In the present work, the thermal behavior of prednicarbate was studied using DSC and TG/DTG. The solid product remaining at the first decomposition step of the drug was isolated by TG, in air and N(2) atmospheres and was characterized using LC-MS/MS, NMR, and IR spectroscopy. It was found that the product at the first thermal decomposition step of prednicarbate corresponds to the elimination of the carbonate group bonding to C(17), and a consequent formation of double bond between C(17) and C(16). Structure elucidation of this degradation product by spectral data has been discussed in detail.
Resumo:
The thermal decomposition of salbutamol (beta(2) - selective adrenoreceptor) was studied using differential scanning calorimetry (DSC) and thermogravimetry/derivative thermogravimetry (TG/DTG). It was observed that the commercial sample showed a different thermal profile than the standard sample caused by the presence of excipients. These compounds increase the thermal stability of the drug. Moreover, higher activation energy was calculated for the pharmaceutical sample, which was estimated by isothermal and non-isothermal methods for the first stage of the thermal decomposition process. For isothermal experiments the average values were E(act) = 130 kJ mol(-1) (for standard sample) and E(act) = 252 kJ mol(-1) (for pharmaceutical sample) in a dynamic nitrogen atmosphere (50 mL min(-1)). For non-isothermal method, activation energy was obtained from the plot of log heating rates vs. 1/T in dynamic air atmosphere (50 mL min(-1)). The calculated values were E(act) = 134 kJ mol(-1) (for standard sample) and E(act) (=) 139 kJ mol(-1) (for pharmaceutical sample).
Resumo:
In this work, TG/DTG and DSC techniques were used to the determination of thermal behavior of prednicarbate alone and associated with glyceryl stearate excipient ( 1: 1 physical mixture). TG/DTG curves obtained for the binary mixture showed a reduction of approximately 37 degrees C to the thermal stability of drug (T(dm/dt-0) (Max)(DTG)). The disappearance of stretching band at 1280 cm(-1) (nu(as) C-O, carbonate group) and the presence of streching band with less intensity at 1750 cm(-1) (nu(s) C-O, ester group) in IR spectrum obtained to the binary mixture submitted at 220 degrees C, when compared with IR spectrum of drug submitted to the same temperature, confirmed the chemical interaction between these substances due to heating. Kinetics parameters of decomposition reaction of prednicarbate were obtained using isothermal (Arrhenius equation) and non-isothermal (Ozawa) methods. The reduction of approximately 45% of activation energy value (E(a)) to the first step of thermal decomposition reaction of drug in the 1:1 (mass/mass) physical mixture was observed by both kinetics methods.
Resumo:
In this work, we studied the photocatalytic and the structural aspects of silicon wafers doped with Au and Cu submitted to thermal treatment. The materials were obtained by deposition of metals on Si using the sputtering method followed by fast heating method. The photocatalyst materials were characterized by synchrotron-grazing incidence X-ray fluorescence, ultraviolet-visible spectroscopy, X-ray diffraction, and assays of H(2)O(2) degradation. The doping process decreases the optical band gap of materials and the doping with Au causes structural changes. The best photocatalytic activity was found for thermally treated material doped with Au. Theoretical calculations at density functional theory level are in agreement with the experimental data.
Resumo:
The kinetics of hydrolysis of 1,8-N-butyl-naphthalimide (1,8-NBN) to 1,8-N-butyl-naphthalamide (1,8-NBAmide) and of 2,3-N-butyl-naphthalimide (2,3-NBN) to 2,3-N-butyl-naphthalamide (2,3-NBAmide), as well as the formation of the respective anhydrides from the amides were investigated in a wide acidity range. 1,8-NBN equilibrates with 1,8-NBAmide in mild alkali. Under the same conditions 2,3-NBN quantitatively yields 2,3-NBAmide. Over a wide range of acidities the reactions of the 1,8- and 2,3-N-butyl-naphthalamides (or imides) yield similar products but with widely different rates and at distinct pH`s. Anhydride formation in acid was demonstrated for 1,8-NBAmide. The reactions mechanisms were rationalized in the manifold pathways of ab initio calculations. The differences in rates and pH ranges in the reactions of the 1,8- and 2,3-N-butyl-naphthalamides were attributed to differences in the stability of the tetrahedral intermediates in alkali as well as the relative stabilities of the five and six-membered ring intermediates. The rate of carboxylic acid assisted 1,8-N-Butyl-naphthalamide hydrolysis is one of the largest described for amide hydrolysis models. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
B3LYP/6-31 + G(d) calculations were employed to investigate the mechanism of the transesterification reaction between a model monoglyceride and the methoxide and ethoxide anions. The gas-phase results reveal that both reactions have essentially the same activation energy (5.9 kcal mol(-1)) for decomposition of the key tetrahedral intermediate. Solvent effects were included by means of both microsolvation and the polarizable continuum solvation model CPCM. Both solvent approaches reduce the activation energy, however, only the microsolvation model is able to introduce some differentiation between methanol and ethanol, yielding a lower activation energy for decomposition of the tetrahedral intermediate in the reaction with methanol (1.1 kcal mol(-1)) than for the corresponding reaction with ethanol (2.8 kcal mol(-1)), in line with experimental evidences. Analysis of the individual energy components within the CPCM approach reveals that electrostatic interactions are the main contribution to stabilization of the transition state. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Carboxylic acid groups in PAH/PAA-based multilayers bind silver cations by ion exchange with the acid protons. The aggregation and spatial distribution of the nanoparticles proved to be dependent oil the process used to reduce the silver acetate aqueous solution. The reducing method with ambient light formed larger nanoparticles with diameters ranging from 4-50 nm in comparison with the reduction method using UV light, which gave particles with diameters of 2-4 nm The high toughness of samples reduced by ambient light is a result of two population distributions of particle sizes caused by different mechanisms when compared with the UV light process. According to these phenomena, a judicious choice of the spectral source call be used as a way to control the type and size of silver nanoparticles formed on PEMs. Depending on the energy of the light source, the Ag nanoparticles present cubic and/or hexagonal crystallographic structures, as confirmed by XRD. Beyond the kinetically controlled process of UV photoinduced cluster formation, the annealing produced by UV light allowed a second mechanism to modify the growth rates, spatial distribution, and phases.
Resumo:
Recent developments in biological research, has shown that the initial maximum permissible exposure (MPE) limits for protection of workers from risks associated with artificial optical radiations were more stringent than needed. Using the most recent MPE limits for artificial optical radiation this piece of work was focused on the investigation of the level of visible light attenuation needed by automatic welding filters in case of switching failure. Results from the comparison of different exposure standards were employed in investigating the need of Vis/IR and blue light transmittance requirement for automatic welding filters. Real and arbitrary spectra were taken into consideration for the worst and best case scenarios of artificial optical radiations. An excel worksheet developed during the execution of this project took into consideration the exposure from different light sources and the precision of the spectrometer used in measuring the transmittances of a welding filter. The worksheet was developed and tested with known product properties to investigate the validity of its formulation. The conclusion drawn from this project was that attenuation in the light state will be needed for products with the darkest state shade 11 or higher. Also shown is that current welding filter protects the eye well enough even in the case of switching failure.
Resumo:
Superoxide(O2-) is a reactive free radical that rapidly undergoes disproportionation to hydrogen peroxide and oxygen. This property makes preparation of superoxide standard for instrument calibration difficult. McDowell et al. (1983) showed photolysis of ketone and alcohol as a convenient method to generate superoxide through triplet and radical intermediates reacting with molecular oxygen. This study expands on this past work and investigates detailed mechanism of the reaction.
Resumo:
Atrazine and 2,4-D are common herbicides used for crop, lawn, and rangeland management. Photochemical degradation has been proposed as one safe and efficient remediation strategy for both 2,4-D and Atrazine. In the presence of iron(llI) and hydrogen peroxide these herbicides decay by both thermal and light induced oxidation. Past studies have focused primarily on sun light as an energy source. This work provides a mechanistic description of herbicide degradation incorporating intermediate degradation products produced in the dark and under well-defined light conditions.
Resumo:
The photolytic phenanthrene-based precursors for both β-methoxycarbene and β-ethoxycarbene were synthesized with and without a deuterium label attached to the a carbon. The incorporation of this deuterium label allowed distinction between a 1, 2-H shift and a 1, 2-O shift pathway to the respective alkyl vinyl ether, without the influence of a primary kinetic isotope effect. Photolyses of these precursors gave rearrangement products of the expected β-alkoxycarbenes. In the case of β-methoxycarbene, no methyl vinyl ether was observed due to its volatility. However, the appearance of aldehyde peaks in the NMR spectra, from an apparent further rearrangement to acetaldehyde through an enol intermediate, indicated that a 1,2-H shift had occurred. Ethyl vinyl ether was isolated following the photolysis of the β-ethoxycarbene precursor. Quantification of the two pathways showed less than 2% undergoing an ethoxy shift to the ethyl vinyl ether. Yield experiments on this photolysis demonstrated a maximum yield of β-ethoxycarbene as 43%, though this decreased as the experiment continued. Computational work on the β-ethoxycarbene system indicates that the triplet scate is more stable than the singlet. In addition, the activation energy to the 1.2-H shift pathway is remarkably low and is clearly consistent with the observed overwhelming preference for this pathway in the experiment.