964 resultados para PERIPHERAL SYMPATHETIC COMPONENT
Resumo:
The tumor necrosis factor (TNF) family member B cell activating factor (BAFF) binds B cells and enhances B cell receptor-triggered proliferation. We find that B cell maturation antigen (BCMA), a predicted member of the TNF receptor family expressed primarily in mature B cells, is a receptor for BAFF. Although BCMA was previously localized to the Golgi apparatus, BCMA was found to be expressed on the surface of transfected cells and tonsillar B cells. A soluble form of BCMA, which inhibited the binding of BAFF to a B cell line, induced a dramatic decrease in the number of peripheral B cells when administered in vivo. Moreover, culturing splenic cells in the presence of BAFF increased survival of a percentage of the B cells. These results are consistent with a role for BAFF in maintaining homeostasis of the B cell population.
Resumo:
An ideal substitute to treat a nerve gap has not been found. Initially, silicone conduits were employed. Later, conduits were fabricated from collagen or polyesters carbonates. More recently, it has been shown that a bioresorbable material, poly-3-hydroxybutyrate (PHB), can enhance nerve repair. The present investigation shows the use of fibrin as a conduit to guide nerve regeneration and bridge nerve defects. In this study we prepared and investigated a novel nerve conduit made from fibrin glue. Using a rodent sciatic nerve injury model (10-mm gap), we compared the extent of nerve regeneration through the new fibrin conduits versus established PHB conduits. After 2 and 4 weeks, conduits containing proximal and distal stumps were harvested. We evaluated the initial axon and Schwann cell stimulation using immunohistochemistry. The conduits presented full tissue integration and were completely intact. Axons crossed the gap after 1 month. Immunohistochemistry using the axonal marker PGP 9.5 showed a superior nerve regeneration distance in the fibrin conduit compared with PHB (4.1 mm versus 1.9 mm). Schwann cell intrusion (S100 staining) was similarly enhanced in the fibrin conduits, both from the proximal (4.2 mm versus 2.1 mm) and distal ends (3.2 mm versus 1.7 mm). These findings suggest an advantage of the new fibrin conduit for the important initial phase of peripheral nerve regeneration. The use of fibrin glue as a conduit is a step toward a usable graft to bridge peripheral nerve lesions. This might be clinically interesting, given the widespread acceptance of fibrin glue among the surgical community.
Resumo:
Epidemiological studies demonstrate an association between insulin resistance, hypertension and cardiovascular morbidity. In addition to its metabolic effects, insulin also has important cardiovascular actions. The sympathetic nervous system and the nitric oxide-l-arginine pathway have emerged as central players in the mediation of these actions. Over the past decade, the underlying mechanisms and the factors that may govern the interaction between insulin and these two major cardiovascular regulatory systems have been studied extensively in healthy people and insulin-resistant individuals. Here we summarize the current understanding and gaps in knowledge on these interactions. We propose that a genetic and/or acquired defect of nitric oxide synthesis could represent a central defect triggering many of the metabolic, vascular and sympathetic abnormalities characteristic of insulin-resistant states, all of which may predispose to cardiovascular disease.
Resumo:
Charcot-Marie-Tooth neuropathy (CMT) represents a heterogenous group of inherited disorders of the peripheral nervous system. One form of autosomal recessive demyelinating CMT (CMT4C, 5q32) is caused by mutations in the gene encoding KIAA1985, a protein of so far unknown function. Here we show that KIAA1985 is exclusively expressed in Schwann cells. KIAA1985 is tethered to cellular membranes through an N-terminal myristic acid anchor and localizes to the perinuclear recycling compartment. A search for proteins that interact with KIAA1985 identified the small GTPase Rab11, a key regulator of recycling endosome functions. CMT4C-related missense mutations disrupt the KIAA1985/Rab11 interaction. Protein binding studies indicate that KIAA1985 functions as a Rab11 effector, as it interacts only with active forms of Rab11 (WT and Q70L) and does not interact with the GDP locked mutant (S25N). Consistent with a function of Rab11 in Schwann cell myelination, myelin formation was strongly impaired when dorsal root ganglion neurons were co-cultured with Schwann cells infected with Rab11 S25N. Our data indicate that the KIAA1985/Rab11 interaction is relevant for peripheral nerve pathophysiology and place endosomal recycling on the list of cellular mechanisms involved in Schwann cell myelination.
Resumo:
Microphthalmia with linear skin defects (MLS) syndrome is an X-linked male-lethal disorder also known as MIDAS (microphthalmia, dermal aplasia, and sclerocornea). Additional clinical features include neurological and cardiac abnormalities. MLS syndrome is genetically heterogeneous given that heterozygous mutations in HCCS or COX7B have been identified in MLS-affected females. Both genes encode proteins involved in the structure and function of complexes III and IV, which form the terminal segment of the mitochondrial respiratory chain (MRC). However, not all individuals with MLS syndrome carry a mutation in either HCCS or COX7B. The majority of MLS-affected females have severe skewing of X chromosome inactivation, suggesting that mutations in HCCS, COX7B, and other as-yet-unidentified X-linked gene(s) cause selective loss of cells in which the mutated X chromosome is active. By applying whole-exome sequencing and filtering for X-chromosomal variants, we identified a de novo nonsense mutation in NDUFB11 (Xp11.23) in one female individual and a heterozygous 1-bp deletion in a second individual, her asymptomatic mother, and an affected aborted fetus of the subject's mother. NDUFB11 encodes one of 30 poorly characterized supernumerary subunits of NADH:ubiquinone oxidoreductase, known as complex I (cI), the first and largest enzyme of the MRC. By shRNA-mediated NDUFB11 knockdown in HeLa cells, we demonstrate that NDUFB11 is essential for cI assembly and activity as well as cell growth and survival. These results demonstrate that X-linked genetic defects leading to the complete inactivation of complex I, III, or IV underlie MLS syndrome. Our data reveal an unexpected role of cI dysfunction in a developmental phenotype, further underscoring the existence of a group of mitochondrial diseases associated with neurocutaneous manifestations.
Resumo:
Signal transduction systems mediate the response and adaptation of organisms to environmental changes. In prokaryotes, this signal transduction is often done through Two Component Systems (TCS). These TCS are phosphotransfer protein cascades, and in their prototypical form they are composed by a kinase that senses the environmental signals (SK) and by a response regulator (RR) that regulates the cellular response. This basic motif can be modified by the addition of a third protein that interacts either with the SK or the RR in a way that could change the dynamic response of the TCS module. In this work we aim at understanding the effect of such an additional protein (which we call ‘‘third component’’) on the functional properties of a prototypical TCS. To do so we build mathematical models of TCS with alternative designs for their interaction with that third component. These mathematical models are analyzed in order to identify the differences in dynamic behavior inherent to each design, with respect to functionally relevant properties such as sensitivity to changes in either the parameter values or the molecular concentrations, temporal responsiveness, possibility of multiple steady states, or stochastic fluctuations in the system. The differences are then correlated to the physiological requirements that impinge on the functioning of the TCS. This analysis sheds light on both, the dynamic behavior of synthetically designed TCS, and the conditions under which natural selection might favor each of the designs. We find that a third component that modulates SK activity increases the parameter space where a bistable response of the TCS module to signals is possible, if SK is monofunctional, but decreases it when the SK is bifunctional. The presence of a third component that modulates RR activity decreases the parameter space where a bistable response of the TCS module to signals is possible.
Resumo:
Metastatic melanomas are frequently refractory to most adjuvant therapies such as chemotherapies and radiotherapies. Recently, immunotherapies have shown good results in the treatment of some metastatic melanomas. Immune cell infiltration in the tumor has been associated with successful immunotherapy. More generally, tumor infiltrating lymphocytes (TILs) in the primary tumor and in metastases of melanoma patients have been demonstrated to correlate positively with favorable clinical outcomes. Altogether, these findings suggest the importance of being able to identify, quantify and characterize immune infiltration at the tumor site for a better diagnostic and treatment choice. In this paper, we used Fourier Transform Infrared (FTIR) imaging to identify and quantify different subpopulations of T cells: the cytotoxic T cells (CD8+), the helper T cells (CD4+) and the regulatory T cells (T reg). As a proof of concept, we investigated pure populations isolated from human peripheral blood from 6 healthy donors. These subpopulations were isolated from blood samples by magnetic labeling and purities were assessed by Fluorescence Activated Cell Sorting (FACS). The results presented here show that Fourier Transform Infrared (FTIR) imaging followed by supervised Partial Least Square Discriminant Analysis (PLS-DA) allows an accurate identification of CD4+ T cells and CD8+ T cells (>86%). We then developed a PLS regression allowing the quantification of T reg in a different mix of immune cells (e.g. Peripheral Blood Mononuclear Cells (PBMCs)). Altogether, these results demonstrate the sensitivity of infrared imaging to detect the low biological variability observed in T cell subpopulations.
Resumo:
In 2014, the debate on the indication of revascularization in case of asymptomatic carotid disease continued, while another one regarding the use of surgery vs. stenting addressed some new issues regarding the long-term cardiac risk of these patients. Renal arteries interventions trials were disappointing, as neither renal denervation nor renal artery stenting was found associated with better blood pressure management or outcome. In contrast, in lower-extremities artery disease, the endovascular techniques represent in 2014 major alternatives to surgery, even in distal arteries, with new insights regarding the interest of drug-eluting balloons. Regarding the aorta, the ESC published its first guidelines document on the entire vessel, emphasizing on the role of every cardiologist for screening abdominal aorta aneurysm during echocardiography. Among vascular wall biomarkers, the aorta stiffness is of increasing interest with new data and meta-analysis confirming its ability to stratify risk, whereas carotid intima-media thickness showed poor performances in terms of reclassifying patients into risk categories beyond risk scores. Regarding the veins, new data suggest the interest of D-dimers and residual venous thrombosis to help the decision of anti-coagulation prolongation or discontinuation after the initial period of treatment for deep vein thrombosis.
Resumo:
Colorectal cancer (CRC) is the second leading cause of cancer-related death in developed countries. Early detection of CRC leads to decreased CRC mortality. A blood-based CRC screening test is highly desirable due to limited invasiveness and high acceptance rate among patients compared to currently used fecal occult blood testing and colonoscopy. Here we describe the discovery and validation of a 29-gene panel in peripheral blood mononuclear cells (PBMC) for the detection of CRC and adenomatous polyps (AP). Blood samples were prospectively collected from a multicenter, case-control clinical study. First, we profiled 93 samples with 667 candidate and 3 reference genes by high throughput real-time PCR (OpenArray system). After analysis, 160 genes were retained and tested again on 51 additional samples. Low expressed and unstable genes were discarded resulting in a final dataset of 144 samples profiled with 140 genes. To define which genes, alone or in combinations had the highest potential to discriminate AP and/or CRC from controls, data were analyzed by a combination of univariate and multivariate methods. A list of 29 potentially discriminant genes was compiled and evaluated for its predictive accuracy by penalized logistic regression and bootstrap. This method discriminated AP >1cm and CRC from controls with a sensitivity of 59% and 75%, respectively, with 91% specificity. The behavior of the 29-gene panel was validated with a LightCycler 480 real-time PCR platform, commonly adopted by clinical laboratories. In this work we identified a 29-gene panel expressed in PBMC that can be used for developing a novel minimally-invasive test for accurate detection of AP and CRC using a standard real-time PCR platform.
Resumo:
Ultrasonographic detection of subclinical atherosclerosis improves cardiovascular risk stratification, but uncertainty persists about the most discriminative method to apply. In this study, we found that the "atherosclerosis burden score (ABS)", a novel straightforward ultrasonographic score that sums the number of carotid and femoral arterial bifurcations with plaques, significantly outperformed common carotid intima-media thickness, carotid mean/maximal thickness, and carotid/femoral plaque scores for the detection of coronary artery disease (CAD) (receiver operating characteristic (ROC) curve area under the curve (AUC) = 0.79; P = 0.027 to <0.001 with the other five US endpoints) in 203 patients undergoing coronary angiography. ABS was also more correlated with CAD extension (R = 0.55; P < 0.001). Furthermore, in a second group of 1128 patients without cardiovascular disease, ABS was weakly correlated with the European Society of Cardiology chart risk categories (R (2) = 0.21), indicating that ABS provided information beyond usual cardiovascular risk factor-based risk stratification. Pending prospective studies on hard cardiovascular endpoints, ABS appears as a promising tool in primary prevention.
Resumo:
Several psychiatric disorders have been associated with CpG methylation changes in CG rich promoters of the brain-derived neurotrophic factor (BDNF) mainly by extracting DNA from peripheral blood cells. Whether changes in peripheral DNA methylation can be used as a proxy for brain-specific alterations remains an open question. In this study we aimed to compare DNA methylation levels in BDNF promoter regions in human blood cells, muscle and brain regions using bisulfite-pyrosequencing. We found a significant correlation between the levels of BDNF promoter I methylation measured in quadriceps and vPFC tissues extracted from the same individuals (n = 98, Pearson, r = 0.48, p = 4.5 × 10(-7)). In the hippocampus, BDNF promoter I and IV methylation levels were strongly correlated (Pearson, n = 37, r = 0.74, p = 1.4 × 10(-7)). We found evidence for sex-dependent effect on BDNF promoter methylation levels in the various tissues and blood samples. Taken together, these data indicate a strong intra-individual correlation between peripheral and brain tissue. They also suggest that sex determines methylation patterns in BDNF promoter region across different types of tissue, including muscle, brain, and blood.