858 resultados para Oxidative Stress and Antioxidant-Related Genes
Resumo:
Differential gene expression of mature and immature Bothriocephalus acheilognathi cestodes was analyzed using the suppression subtractive hybridization technique. Five mature-associated cDNAs were isolated and characterized. Virtual Northern blot and RT-PCR analyses confirmed that four of the five genes were up-regulated in mature parasites. The sequence analysis revealed that one gene encoded the structural protein chorion precursor, and that three encoded functional proteins homologous to yolk ferritin, sodium/hydrogen exchanger and muscin-like protein. Another gene appeared to be specific to B. acheilognathi, encoding a putative metal-bound protein. Although results obtained in the present study are preliminary, the information about the five genes may provide clues for further investigation on the decline in parasite numbers during the maturation of B. acheilognathi.
Resumo:
The sex-determining gene Mab-3 of C. elegans and the doublesex gene of Drosophila each contain a common DM domain and share a similar role. Human doublesex-related gene DMRT1 also encodes a conserved DM-related DNA-binding domain. We present here the amplification of a broad range of DM domain sequences from three fish species using degenerate PCR. Our results reveal unexpected complexity of the DM domain gene family in vertebrates. (C) 2002 Wiley-Liss, Inc.
Resumo:
Metallothionein (MT) is a superfamily of cysteine-rich proteins contributing to metal metabolism, detoxification of heavy metals, and immune response such as protecting against ionizing radiation and antioxidant defense. A metallothionein (designated AiMT2) gene was identified and cloned from bay scallop, Argopecten irradians. The full length cDNA of AiMT2 consisted of an open reading frame (ORF) of 333 bp encoding a protein of 110 amino acids. with nine characteristic Cys-X-Cys, five Cys-X-X-Cys, five Cys-X-X-X-Cys and two Cys-Cys motif arrangements and a conserved structural pattern Cys-x-Cys-x(3)-Cys-Tyr-x(3)Cys-x-Cys-x(3)-Cys-x-Cys-Arg at the C-terminus. The cloned ANT showed about 50% identity in the deduced amino acid sequence with previously published MT sequences of mussels and oysters. The conserved structural pattern and the close phylogenetic relationship of AiMT2 shared with MTs from other mollusc especially bivalves indicated that AiMT2 was a new member of molluscan MT family. The mRNA transcripts in hemolymph of AiMT2 under cadmium (Cd) exposure and bacteria challenge were examined by real-time RT-PCR. The mRNA expression of AiMT2 was up-regulated to 3.99-fold at 2 h after Listonella anguillarum challenge, and increased drastically to 66.12-fold and 126.96-fold at 16 and 32 h post-challenge respectively. Cadmium ion exposure could induce the expression of AiMT2, and the expression level increased 2.56-fold and 6.91-fold in hemolymph respectively after a 10-day exposure of 100 mu g L-1 and 200 mu g L-1 CdCl2. The sensitivity of AiMT2 to bacteria challenge and cadmium stress indicated it was a new Cd-dependent MT in bay scallop and also regulated by an immune challenge. The changes in the expression of AiMT2 could be used as an indicator of exposure to metals in pollution monitoring programs and oxidative stress, and bay scallop as a potential sentinel organism for the cadmium contamination in aquatic environment. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Oxytetracycline-resistant bacteria were isolated from a mariculture farm in China, and accounted for 32.23% and 5.63% of the total culturable microbes of the sea cucumber and the sea urchin rearing waters respectively. Marine vibrios, especially strains related to Vibrio splendidus or V. tasmaniensis, were the most abundant resistant isolates. For oxytetracycline resistance, tet(A), tet(B) and tet(D) genes were detected in both sea cucumber and sea urchin rearing ponds. The dominant resistance type for V. tasmaniensis-like strains was the combination of both tet(A) and tet(B) genes, while the major resistance type for V. splendidus-like strains was a single tet(D) gene. Most of the sea cucumber tet-positive isolates harbored a chloramphenicol-resistance gene, either cat IV or cat II, while only a few sea urchin tet-positive isolates harbored a cat gene, actually cat IV. The coexistence of tet and cat genes in the strains isolated from the mariculture farm studied was helpful in explaining some of the multi-resistance mechanisms. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Five kinds of Schiff bases of chitosan and carboxymethyl chitosan (CMCTS) have been prepared according to a previous method and the antioxidant activity was studied using an established system, such as superoxide and hydroxyl radical scavenging. Obvious differences between the Schiff bases of chitosan and CMCTS were observed, which might be related to contents of the active hydroxyl and amino groups in the molecular chains. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The field of redox biology is inherently intertwined with oxidative stress biomarkers. Oxidative stress biomarkers have been utilized for many different objectives. Our analysis indicates that oxidative stress biomarkers have several salient applications: (1) diagnosing oxidative stress, (2) pinpointing likely redox components in a physiological or pathological process, and (3) estimating the severity, progression and/or regression of a disease. On the contrary, oxidative stress biomarkers do not report on redox signaling. Alternative approaches to gain more mechanistic insights are: (1) measuring molecules that are integrated in pathways linking redox biochemistry with physiology, (2) using the exomarker approach and (3) exploiting -omics techniques. More sophisticated approaches and large trials are needed to establish oxidative stress biomarkers in the clinical setting.
Resumo:
The keystone aquatic organism Daphnia magna is extensively used to assess the toxicity of chemicals. This has recently lead to an increase in the omics literature focusing on daphnids, an increase fuelled by the sequencing of the Daphnia pulex genome. Yet, no omics study has looked directly at oxidative stress (OS) in daphnids, even though OS is of primary importance in the response of aquatic organisms to their changing environment and is often induced by anthropogenic xenobiotics. This thesis thus focuses on the application of redox-proteomics, the study of the oxidative modification of proteins, to D. magna Specifically, daphnids were exposed to copper or paraquat, two well studied prooxidants, and protein carbonyls were labelled with fluorescein-5-thiosemicarbazide prior to twodimensional electrophoresis (2DE). This showed clearly that both compounds affect a different portion of the proteome. The identified proteins indicated that energy metabolism was affected by paraquat, while copper induced a reduction of the heat shock response (heat shock proteins, proteases and chaperones) a counterintuitive result which may be adaptative to metal toxicity in arthropods. The same approach was then applied to the study of the toxicity mechanism of silver nanoparticles (AgNP), an increasingly utilised form of silver with expected environmental toxicity, and its comparison to silver nitrate. The results demonstrate that, although less toxic than silver ions, AgNP toxicity functions through a different mechanism. AgNP toxicity is thus not a product of silver dissolution and increased protein carbonylation indicates that AgNP cause OS. Interestingly three of the four tested compounds altered vitellogenin levels and oxidation. Vitellogenins could thus represent an interesting subproteome for the detection of stress in daphnids. Finally, an experiment with oxidised BSA demonstrates the applicability of solid phase hydrazide in the enrichment of undigested carbonylated proteins.
Resumo:
There is evidence that oxidative stress plays a role in the development of chronic lung disease (CLD), with immature lungs being particularly sensitive to the injurious effect of oxygen and mechanical ventilation. We analyzed total ascorbate, urate, and protein carbonyls in 102 bronchoalveolar lavage fluid samples from 38 babies (33 preterm, 24–36 wk gestation; 5 term, 37–39 wk gestation). Preterm babies had significantly decreasing concentrations of ascorbate, urate, and protein carbonyls during the first 9 days of life (days 1–3, 4–6, and 7–9, Kruskal-Wallis ANOVA: P 5 0.016, P , 0.0001, and P 5 0.010, respectively). Preterm babies had significantly higher protein carbonyl concentrations at days 1–3 and 4–6 (P 5 0.005 and P 5 0.044) compared with term babies. Very preterm babies (24–28 wk gestation) had increased concentrations of protein carbonyls at days 4–6 (P 5 0.056) and significantly decreased ascorbate concentrations at days 4–6 (P 5 0.004) compared with preterm babies (29–36 wk gestation). Urate concentrations were significantly elevated at days 1–3 (P 5 0.023) in preterm babies who subsequently developed CLD. This study has shown the presence of oxidative stress in the lungs of preterm babies during ventilation, especially in those who subsequently developed CLD.
Resumo:
Diabetes is associated with oxidative stress and increased levels of inflammatory cytokines. The aim of the study was to assess the effects of inflammatory cytokines and oxidative stress associated with raised glucose levels on inducible nitric oxide synthase (iNOS) promoter activity in intestinal epithelial cells. High glucose (25 mmol/l) conditions reduced glutathione (GSH) levels in the human intestinal epithelial cell line, DLD-1. Addition of the antioxidant alpha-lipoic acid resulted in the restoration of GSH levels to normal. Upregulation of basal iNOS promoter activity was observed when cells were incubated in high glucose alone. This effect was significantly reduced by the addition of the antioxidant, alpha-lipoic acid and completely blocked with inhibition of NFkappa B activity. Cytokine stimulation [interleukin-1 beta, tumor necrosis factor-alpha, interferon-gamma] induced iNOS promoter activity in all conditions and this was accompanied by an increase in nitric oxide (NO) production. Inhibition of NFkappa-B activity decreased but did not completely inhibit cytokine-induced iNOS promoter activity and subsequent NO production. In conclusion, high glucose-induced iNOS promoter activity is mediated in part through intracellular GSH and NFkappa-B.
Resumo:
BACKGROUND/AIMS: Chronic inhibition of nitric oxide (NO) synthesis is associated with hypertension, myocardial ischemia, oxidative stress and hypertrophy; expression of adrenomedullin (AM) and intermedin (IMD) and their receptor activity modifying proteins (RAMPs 1-3) is augmented in cardiomyocytes, indicating that the myocardial AM/ IMD system may be activated in response to pressure loading and ischemic insult. The aim was to examine effects on (i) parameters of cardiomyocyte hypertrophy and on (ii) expression of AM and IMD and their receptor components in NO-deficient cardiomyocytes of an intervention chosen specifically for ability to alleviate pressure loading and ischemic injury concurrently. METHODS: The NO synthesis inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME, 35 mg.kg(-1).day(-1)) was given to rats for 8 weeks, with/ without concurrent administration of beta-adrenoceptor antagonist, atenolol (25 mg.kg(-1).day(-1)) / calcium channel blocker, nifedipine (20mg.kg(-1).day(-1)). RESULTS: In L-NAME treated rats, atenolol / nifedipine abolished increases in systolic blood pressure and plasma AM and IMD levels and in left ventricular cardiomyocytes: (i) normalized increased cell width and mRNA expression of hypertrophic (sk-alpha-actin) and cardio-endocrine (ANP, BNP, ET) genes; (ii) normalized augmented membrane protein oxidation; (iii) normalized mRNA expression of AM, IMD, RAMP1, RAMP2 and RAMP3. CONCLUSIONS: normalization of blood pressure and membrane oxidant status together with prevention of hypertrophy and normalization of the augmented expression of AM, IMD and their receptor components in NO-deficient cardiomyocytes by atenolol / nifedipine supports involvement of both pressure loading and ischemic insult in stimulating cardiomyocyte hypertrophy and induction of these counter-regulatory peptides and their receptor components. Attenuation of augmented expression of IMD in this model cannot however be explained simply by prevention of cardiomyocyte hypertrophy.